• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Tuesday, March 28, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

DNA sites linked with physical differences between sexes now also linked to disease risk

Bioengineer by Bioengineer
May 5, 2022
in Chemistry
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Some physical traits that differ between sexes are known to be linked to certain single nucleotide polymorphisms (SNPs) in chromosomes other than the X and Y chromosomes, with each SNP representing a difference in a certain DNA building block in a particular stretch of DNA. New research now suggests that many of these “sex-heterogenous” SNPs also contribute to a person’s risk for a variety of diseases. Michela Traglia and colleagues at the University of California San Francisco, U.S. present these findings May 5th in the open-access journal PLOS Genetics.

DNA sites linked with physical differences between sexes now also linked to disease risk

Credit: Museums Victoria (Public Domain, https://creativecommons.org/publicdomain/mark/1.0/)

Some physical traits that differ between sexes are known to be linked to certain single nucleotide polymorphisms (SNPs) in chromosomes other than the X and Y chromosomes, with each SNP representing a difference in a certain DNA building block in a particular stretch of DNA. New research now suggests that many of these “sex-heterogenous” SNPs also contribute to a person’s risk for a variety of diseases. Michela Traglia and colleagues at the University of California San Francisco, U.S. present these findings May 5th in the open-access journal PLOS Genetics.

Everyone’s genome contains millions of SNPs, and researchers have discovered many associations between certain SNPs and people’s distinct traits. Understanding SNPs has a variety of applications, such as predicting how well a particular medicine might work for a given person or learning which genes contribute to a particular disease.

Traglia and colleagues previously found that SNPs associated with certain differences in physical traits between men and women—such as waist-hip ratio and basal metabolic rate—may also affect the biology of autism spectrum disorder and other complex diseases. Now, they have built on that work, leveraging two publicly available genome-wide statistical datasets to identify an updated list of 2,320 sex-heterogeneous SNPs.

Analysis of these SNPs revealed that they are also statistically associated with a variety of health-related traits and diseases, some with strong sex bias and some without, including schizophrenia, type 2 diabetes, anorexia, heart failure, and ADHD.

Further investigation showed that these SNPs are located in stretches of DNA that are either within or near genes involved in skeletal and muscle development in a growing embryo. In addition, these SNPs appear to play a role in regulating gene expression and DNA methylation, which are fundamental processes by which a person’s DNA is translated into their distinct biology and traits.

Overall, the researchers conclude that the identified SNPs play a role in early-life biological processes that not only shape traits that are distinct between sexes, but also affect health and disease risk later in life. Further research will be needed to better understand the biological mechanisms that underly this role of sex-heterogeneous SNPs.

“We found that genetic alleles with differing effects on measured physical traits in men and women also play an outsized role in health risks,” co-author Lauren Weiss adds. “We hope this work helps us to understand the genetic underpinnings of sexual dimorphism and its relationship with both early development and later disease risk.”

#####

In your coverage, please use this URL to provide access to the freely available article in PLOS Genetics:

http://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1010147

Citation: Traglia M, Bout M, Weiss LA (2022) Sex-heterogeneous SNPs disproportionately influence gene expression and health. PLoS Genet 18(4): e1010147. https://doi.org/10.1371/journal.pgen.1010147

Author Countries: United States

Funding: This work has been supported by SFARI 734069LW and NIH R01MH114924 (LAW). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.



Journal

PLoS Genetics

DOI

10.1371/journal.pgen.1010147

Method of Research

Experimental study

Subject of Research

Cells

COI Statement

Competing interests: The authors have declared that no competing interests exist.

Share12Tweet8Share2ShareShareShare2

Related Posts

Aging (Aging-US)

Aging | Parsing chronological and biological age effects on vaccine responses

March 27, 2023
O-ClickFC for high-throughput analysis of single-cell lipid metabolism at the organelle level

Novel Click chemistry technology for ultrafast analysis of intracellular lipids

March 27, 2023

Storing information with spins: Creating new structured spin states with spatially structured polarized light

March 27, 2023

In the tropics, woody vines make lightning more deadly for forests

March 27, 2023

POPULAR NEWS

  • ChatPandaGPT

    Insilico Medicine brings AI-powered “ChatPandaGPT” to its target discovery platform

    66 shares
    Share 26 Tweet 17
  • Northern and southern resident orcas hunt differently, which may help explain the decline of southern orcas

    44 shares
    Share 18 Tweet 11
  • Skipping breakfast may compromise the immune system

    43 shares
    Share 17 Tweet 11
  • Insular dwarfs and giants more likely to go extinct

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

ISTA welcomes first journalists in residence

Candidate found to inhibit malignant melanoma growth

Cancer that spreads to the lung maneuvers to avoid being attacked by “killer” T cells

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 48 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In