• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, October 7, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Cancer

DNA repair map of the entire human genome

Bioengineer by Bioengineer
May 1, 2015
in Cancer
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

When the common chemotherapy drugs cisplatin or oxaliplatin hit cancer cells, they damage DNA so that the cells can’t replicate. But the cells have ways to repair the DNA. The cancer drugs aren’t as effective as patients need. Researchers at the UNC School of Medicine and UNC Lineberger Comprehensive Cancer Center have developed a method for finding where this DNA repair happens throughout all of human DNA.

dna repair map

The findings, published in the journal Genes & Development, offers scientists a potential way to find and target the proteins cancer cells use to circumnavigate therapy. The benefit of this new method could be more effective and better tolerated classes of cancer therapeutics.

The research, led by Aziz Sancar, MD, PhD, the Sarah Graham Kenan Professor of Biochemistry and Biophysics, marks the first time scientists have been able to map the repair of DNA damage over the entire human genome.

“Now we can say to a fellow scientist, ‘tell us the gene you’re interested in or any spot on the genome, and we’ll tell you how it is repaired,'” said Sancar, co-senior author and member of the UNC Lineberger Comprehensive Cancer Center. “Out of six billion base pairs, pick out a spot and we’ll tell you how it is repaired.”

When DNA is damaged, cells use many enzymes to cut the strand of DNA and excise the damaged fragment. Then, other enzymes repair the original DNA so that the cells can function properly. Previously, Sancar’s lab used purified enzymes to discover how this process happens in DNA damaged by UV irradiation and by chemotherapeutic drugs such as cisplatin and oxaliplatin.

In recent years, Michael Kemp, PhD, a researcher on Sancar’s team found that a particular protein called TFIIH bound tightly to the excised damaged DNA fragment in the test tube. But for this information to be truly useful to biomedical researchers, the experiment needed to be replicated in human cells. Extracting a stable TFIIH-DNA fragment proved difficult. Not until postdoctoral fellow Jinchuan Hu, PhD, co-first author on the Genes & Development paper, joined Sancar’s lab could Sancar’s team accomplish the task.

Through a series of sophisticated experiments with human skin cells, Hu exposed the cells to ultraviolet radiation and used an antibody against the enzyme TFIIH to isolate the enzyme complex with the excised DNA damage. Then he created experimental techniques to pull the enzyme – as well as the excised DNA fragment it was bound to – from the cells.

The fragment was stable enough for Sancar’s lab to sequence it. Then, Sheera Adar, PhD, fellow postdoc and paper co-first author, and Jason Lieb, PhD, co-senior investigator of the study, used their expertise in computational biology to analyze where the DNA repair happened throughout the entire genome and thus generate a human genome repair map for the first time.

Because UV radiation and common chemotherapy drugs such as cisplatin cause DNA damage in similar ways, Sancar’s team is now using their new DNA excision repair method – called XR-Seq – to study cells affected by cisplatin. They also hope to use it to study the biochemical reactions in animal models with the goal of finding the specific mechanisms that allow cancer cells to repair DNA damage to survive.

“Cisplatin is an old drug,” Adar said. “Right now, it’s used with other drugs as a combination therapy. We know these drugs make cancer cells more sensitive to cisplatin. But we don’t really know how they do this. We now have an assay to find out how the cells’ DNA is being repaired. Our goal is to make cancer cells even more sensitive to existing drugs to help patients.”

The research also revealed that parts of the genome scientists previously thought did very little are actually part of this repair process.

On chromosomes, DNA forms genes that create proteins – the building blocks of life. Between these genes, there are DNA sequences – simple bits of genetic information.

“People have thought that this DNA didn’t do anything,” Adar said. “But it turns out that proteins bind to these other DNA sequences, and this affects other nearby or far-away genes. Our analysis shows that these DNA regulatory sequences are also being repaired. So, if they’re being repaired, then they’re likely important. And now we can find their locations throughout the genome.”

Story Source:

The above story is based on materials provided by University of North Carolina

Share14Tweet9Share2ShareShareShare2

Related Posts

Male-Origin Microchimerism Linked to Cancer Risk

October 7, 2025

Age Impact on Chemo Use, Outcomes in Colon Cancer

October 7, 2025

Adolescents Facing Challenges Often Start Smoking, Highlighting the Need for Enhanced Cessation Support

October 7, 2025

Former Scripps Research Assistant Professor Honored with 2025 Nobel Prize in Physiology or Medicine

October 7, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    732 shares
    Share 292 Tweet 183
  • New Study Reveals the Science Behind Exercise and Weight Loss

    97 shares
    Share 39 Tweet 24
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    94 shares
    Share 38 Tweet 24
  • Ohio State Study Reveals Protein Quality Control Breakdown as Key Factor in Cancer Immunotherapy Failure

    76 shares
    Share 30 Tweet 19

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Mobile HIV Care for Youth: Feasibility and Reach

Scaling Complex Molecular Reactions with Hybrid AI Models

Pneumococcal Serotype 3 Evolves During Year-Long Carriage

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 63 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.