• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Sunday, February 5, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Diversifying the next generation of TB vaccines

Bioengineer by Bioengineer
October 17, 2022
in Health
Reading Time: 5 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

SAN ANTONIO (October 17, 2022) – Mirroring the all-hands-on-deck collaborative approach that accelerated the development of a variety of COVID-19 vaccines during the pandemic, the National Institutes of Health is seeking to spark similar innovation for a longstanding, intractable disease: tuberculosis. As part of this national push, NIH’s National Institute of Allergy and Infectious Diseases awarded Texas Biomedical Research Institute (Texas Biomed) and The Access to Advanced Health Institute (AAHI) in Seattle, Washington, a $3.5 million, five-year Innovation for Tuberculosis Vaccine Discovery grant.

AAHI vaccine vials

Credit: Delany Brown Photography

SAN ANTONIO (October 17, 2022) – Mirroring the all-hands-on-deck collaborative approach that accelerated the development of a variety of COVID-19 vaccines during the pandemic, the National Institutes of Health is seeking to spark similar innovation for a longstanding, intractable disease: tuberculosis. As part of this national push, NIH’s National Institute of Allergy and Infectious Diseases awarded Texas Biomedical Research Institute (Texas Biomed) and The Access to Advanced Health Institute (AAHI) in Seattle, Washington, a $3.5 million, five-year Innovation for Tuberculosis Vaccine Discovery grant.

Tuberculosis (TB) infects more than 10 million people globally a year, and killed more than 1.5 million in 2020. Before COVID-19, it was the leading cause of death by a single infectious agent. The only approved TB vaccine, which is used widely in other countries, but not in the U.S., primarily protects children as it loses efficacy as people age.

“Tuberculosis is an infectious disease that’s caused immense human mortality and suffering for thousands of years. We need to do better,” says Texas Biomed Staff Scientist and adjunct Associate Professor Gillian Beamer, VMD, PhD, DACVP, and the grant’s principal investigator. “This collaboration is exciting because we are bringing scientists with different expertise together to tackle this challenge.”

Researchers at AAHI, led by Christopher Fox, PhD, and Emily Voigt, PhD, are developing several TB vaccine candidates. They are building on extensive experience designing protein and RNA vaccine candidates based on AAHI’s immune-enhancing platforms, both of which incorporate adjuvant technology.  Adjuvants are components that make vaccines more effective by enhancing the body’s immune response. They will evaluate how various vaccine combinations administered in two doses perform in the lab.

“In past studies, we’ve found using two different types of vaccines successively can lead to a more robust immune response,” says Dr. Voigt, AAHI’s Principal Scientist, RNA Platform. “We’ll mix and match adjuvanted protein and RNA vaccine technologies to see what works best and send those leading vaccine combinations to Texas Biomed to test further.”

A unique feature of the research project will be the animal models helping test the most promising vaccines at Texas Biomed. They will not be your typical lab mice.

“The most commonly used laboratory mice are genetically identical to each other,” Dr. Beamer says. “While that is preferred to study specific cellular and molecular mechanisms, for us, it’s analogous to studying how only one person might react to a vaccine or therapy.”

Instead, she is relying on mice that have been specifically bred to represent the genetic diversity of the human population. This will enable the team to see how individuals with different genetic backgrounds respond to the vaccines.

“We think the approach of modeling human genetic diversity is critical in preclinical studies for tuberculosis because we know genetics impacts tuberculosis disease. We’re 99.999% confident genetics will also impact the vaccine response,” Dr. Beamer says.

The team aims to leverage the genetic diversity of the mice to identify vaccines that will protect those most susceptible to TB. This will be one of the first times this population of mice, called the Diversity Outbred mouse population, and a related group called Collaborative Cross inbred mice, will be used to test novel vaccines.

“Texas Biomed is excited to partner on this project,” said Texas Biomed Executive Vice President for Research Joanne Turner, PhD. “The Institute’s expertise in both TB research and animal model development are critical to move research like this forward.”

Dr. Fox, who is AAHI’s Senior Vice President, Formulations, underscored how this is truly innovative for vaccine development, which is required to begin with animal testing before testing in humans. “The data we are going to get out of this is going to be much more meaningful than typical preclinical data,” he says.

The team is excited and optimistic. AAHI already has an adjuvanted-protein TB vaccine performing well in phase 2 clinical trials.

“The adjuvant in that vaccine was developed a number of years ago, and we’ve made several important advances since then in adjuvant technology,” Dr. Fox says. “We want to test those new adjuvant systems to see if we can do better than what’s out there already.”

Dr. Fox will test various adjuvants, some of which incorporate elements developed by close collaborators at 3M. New adjuvants could not just benefit TB vaccines, but vaccines for other diseases as well.

As these TB vaccines advance further, AAHI researchers plan to investigate different ways to make them thermostable, so they last for several months at room temperature or several years in standard refrigerators. This would eliminate the need for extreme cold storage such as what was required for the first generation of mRNA COVID-19 vaccines.

“We’ve recently had success with freeze-dried technology vastly extending the storage life of mRNA vaccines, and will look to apply that here as the research proceeds,” AAHI’s Dr. Voigt says. “It’s very important to us to increase the practicality of getting vaccines to people who need them most around the world.”

The research project described here is supported by the National Institute of Allergy and Infectious Diseases of the National Institutes of Health under award number R61AI169026.  The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

###

This is a joint press release from Texas Biomed and AAHI.

About Texas Biomed

Texas Biomed is one of the world’s leading independent biomedical research institutions dedicated to eradicating infection and advancing health worldwide through innovative biomedical research. Texas Biomed partners with researchers and institutions around the world to develop vaccines and therapeutics against viral pathogens causing AIDS, hepatitis, hemorrhagic fever, tuberculosis and parasitic diseases responsible for malaria and schistosomiasis disease. The Institute has programs in host-pathogen interaction, disease intervention and prevention and population health to understand the links between infectious diseases and other diseases such as aging, cardiovascular disease, diabetes and obesity. For more information on Texas Biomed, go to www.TxBiomed.org.

About AAHI

AAHI is a nonprofit biotech research institute located in Seattle, Washington that combines the high-quality science of an academic research organization with the product-development capabilities of a biotech company to help combat some of the world’s deadliest diseases, including COVID-19, cancer, fungal and parasitic infections, and other non-communicable diseases. For nearly three decades, AAHI, previously known as the Infectious Disease Research Institute, has focused on creating immune-enhancing technologies that improve the body’s natural response to disease. Through collaborations, AAHI brings innovation from the lab to the clinic to the people, furthering AAHI’s mission to bring together the best experts, technologies, and platforms to create accessible, high-quality products and solutions. AAHI is working to build a world in which every person has access to tools that harness their immune system and allow them to live a healthy life free of illness and disease. For more information, go to AAHI.org or follow us on LinkedIn.



Share12Tweet8Share2ShareShareShare2

Related Posts

road

Black South Africans report higher life satisfaction and are at less risk for depression post-migration, MU study finds

February 3, 2023
Lifetime Uncertainty and Level of Violence Global Map

Living in a violent setting can result in a shorter, but also a more unpredictable lifespan, according to new research from NYU Abu Dhabi social scientists

February 3, 2023

Harnessing an innate protection against Ebola

February 3, 2023

Signal transmission in the immune and nervous system through NEMO

February 3, 2023

POPULAR NEWS

  • Jean du Terrail, Senior Machine Learning Scientist at Owkin

    Nature Medicine publishes breakthrough Owkin research on the first ever use of federated learning to train deep learning models on multiple hospitals’ histopathology data

    65 shares
    Share 26 Tweet 16
  • First made-in-Singapore antibody-drug conjugate (ADC) approved to enter clinical trials

    58 shares
    Share 23 Tweet 15
  • Metal-free batteries raise hope for more sustainable and economical grids

    41 shares
    Share 16 Tweet 10
  • One-pot reaction creates versatile building block for bioactive molecules

    37 shares
    Share 15 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Health Equity Report Card pilot project to help close the care gap highlighted on World Cancer Day

Tech that turns household surfaces into touch sensors is a touch closer to application

Preference for naturally talented over hard workers emerges in childhood, HKUST researchers find

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 42 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In