• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, August 15, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Discovery of pH-dependent ‘switch’ in interaction between pair of protein molecules

Bioengineer by Bioengineer
October 23, 2020
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: FENG Yingang

All biological processes are in some way pH-dependent. Our human bodies, and those of other organisms, need to maintain specific- and constant- pH regulation in order to function. Changes in pH can have serious biological consequences or, as researchers at the Qingdao Institute of Bioenergy and Bioprocess Technology (QIBEBT), Chinese Academy of Sciences (CAS) found, serious benefits.

The findings are published on Oct. 23 in the journal Science Advances.

Cellulosomes are extracellular complexes consisting of multiple enzymes, which are associated with the cell’s surface. Within the cellulosome cellular structure, the protein molecules dockerin and cohesin were the focus of this study.

“Cellulosomes are complex nanomachines in nature and have great values in biofuel production and biotechnology. This study is an example of the complexity and diversity of cellulosomes,” said study author FENG Yingang, Professor, Metabolomics Group.

Changes in pH have previously been shown to result in ‘on-off’ switches within protein functions, many of which occur naturally and are essential for life processes. Biotechnical innovations can utilize this relevant phenomenon to develop sensors or switches using biomolecules that are pH-dependent.

The latest discovery, on the cellulosome assembly of the bacterium Clostridium acetobutylicum, takes this prospect further by switching between two functional sites, rather than simply ‘on’ or ‘off’. This opens additional possibilities.

“Our study not only revealed an elegant example of biological regulation but also provides a new approach for developing pH-dependent protein devices and biomaterials for biotechnological application,” said FENG.

Researchers found that changing the pH from 4.8 to 7.5 resulted in the cohesin-binding sites on the dockerin molecule switching from one site to the other. This type of switching between two functional sites has not been noted for any interaction between proteins previously.

Nuclear magnetic resonance (NMR) and isothermal titration calorimetry (ITC) were used to describe the distinct features of this interaction. Researchers additionally noted that the affinity, or the attraction between the molecules, was found to change along with the pH. This property is considered unusual when compared to other cohesin-dockerin interactions and is unique, thus far, to C. acetobutylicum bacteria.

These, and future discoveries like it, can potentially be used to create more complex biological switches in synthetic biology and further developments in the fields of biotechnology.

“Next, we will continue to elucidate the structure and regulation of cellulosomes, which could provide interesting novel discoveries and new strategies to increase the efficiency of lignocellulose-based biofuel production,” FENG said. “Our ultimate goal is to promote sustainable and economical lignocellulose bioconversion and bioenergy production.”

###

Media Contact
CHENG Jing
[email protected]

Original Source

http://english.cas.cn/

Related Journal Article

http://dx.doi.org/10.1126/sciadv.abd7182

Tags: BacteriologyBiologyBiotechnologyCell Biology
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Rewrite Impact of resuscitation with 100% oxygen during physiological-based cord clamping or immediate cord clamping on lung inflammation and injury as a headline for a science magazine post, using no more than 8 words

August 15, 2025
Rewrite Illuminating photoreceptors: TGFβ signaling modulates the severeness of retinal degeneration as a headline for a science magazine post, using no more than 8 words

Rewrite Illuminating photoreceptors: TGFβ signaling modulates the severeness of retinal degeneration as a headline for a science magazine post, using no more than 8 words

August 15, 2025

Partial Flood Defenses Heighten Risks, Inequality in Cities

August 15, 2025

New Multimodal Sentiment Analysis Technique Enhances Emotional Detection and Reduces Computing Costs

August 15, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    140 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    79 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    59 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Rewrite Impact of resuscitation with 100% oxygen during physiological-based cord clamping or immediate cord clamping on lung inflammation and injury as a headline for a science magazine post, using no more than 8 words

Rewrite Illuminating photoreceptors: TGFβ signaling modulates the severeness of retinal degeneration as a headline for a science magazine post, using no more than 8 words

Partial Flood Defenses Heighten Risks, Inequality in Cities

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.