• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, September 15, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Discovery of large family of two-dimensional ferroelectric metals

Bioengineer by Bioengineer
September 28, 2020
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: ©Science China Press

It is usually believed that ferroelectricity can appear in insulating or semiconducting materials rather than in metals, because conducting electrons of metals always screen out the internal static electric field arising from the dipole moments. In 1965, Anderson and Blount proposed the concept of ‘ferroelectric metal’, pointing out that the electric polarization may appear in certain martensitic transitions due to the inversion symmetry breaking [Anderson et al. Phys Rev Lett 1965, 14, 217-219]. However, after exploration of more than a half century, very rare ferroelectric metals were reported so far. In 2018, two-three layers WTe2 were reported to have switchable spontaneous out-of-plane polarization, which might be the first experimental observation for the coexistence of ferroelectricity and metallicity in a two-dimensional (2D) material [Fei et al. Nature 560, 336 (2018)].

Recently, Gang Su and coworkers have systematically investigated a large family (2,964) of 2D bimetal phosphates by using data-driven machine learning with novel electronic orbital based descriptors and high-throughput first-principles calculations, discovering 60 stable 2D ferroelectric materials with out-of-plane polarization that contain 16 novel ferroelectric metals and 44 ferroelectric semiconductors including seven multiferroics that reveal the coexistence of two or three types of ferroic orderings such as ferromagnetic, antiferromagnetic, ferroelectric, and ferroelastic orderings, and seven ferroelectrics suitable for water-splitting photocatalysts. These multiferroic materials may have potential applications in magnetoelectric, magnetostrictive, or mechanic-electric nanodevices.

By performing a detail charge analysis, they found that the conducting electrons mainly move on an upper surface of these 2D ferroelectric metals, whereas the electric polarization vertical to the upper surface is from the lower surface, which origins from the spontaneous inversion symmetry breaking induced by opposite displacements of bimetal atoms, thereby giving rise to the coexistence of metallicity and ferroelectricity. It is observed that the full-d-orbital coinage metal elements cause the displacements and polarization larger than other elements. The ferroelectric-paraelectric phase transition and polarization reversal in these 2D ferroelectric metals are also studied, and they exposed that the energy versus polarization profiles exhibit common double-well shape and clear bistability, where two minima correspond to ferroelectric phases of opposite polarizations, and the maximum corresponds to paraelectric phase. In addition, Van der Waals heterostructures based on these ferroelectric metals were also shown in possible applications to adjust the Schottky barrier height or the Schottky-Ohmic contact type, indicating that they may be used to manipulate vertical transport properties of the devices.

This present work not only expands greatly the family of 2D ferroelectric metals, which would spur more interest in further exploration of 2D ferroelectric metals both in theories and experiments, but also presents an efficient method by combining data-driven machine learning and high-throughput first-principle calculations to accelerate discoveries of new advanced functional materials.

###

The work is supported by the National Key R&D Program of China, the Strategic Priority Research Program of CAS, the National Nature Science Foundation of China, and Beijing Municipal Science and Technology Commission. The calculations were performed on Era at the Supercomputing Center of Chinese Academy of Sciences and Tianhe-2 at the National Supercomputing Center in Guangzhou.

See the article:

Xing-Yu Ma, Hou-Yi Lyu, Kuan-Rong Hao, Yi-Ming Zhao, Xiaofeng Qian, Qing-Bo Yan, Gang Su. Large family of two-dimensional ferroelectric metals discovered via machine learning, Science Bulletin, 2020, https://doi.org/10.1016/j.scib.2020.09.010

Media Contact
yanbei
[email protected]

Related Journal Article

http://dx.doi.org/10.1016/j.scib.2020.09.010

Tags: Atomic/Molecular/Particle PhysicsChemistry/Physics/Materials Sciences
Share12Tweet8Share2ShareShareShare2

Related Posts

Random-Event Clocks Offer New Window into the Universe’s Quantum Nature

Random-Event Clocks Offer New Window into the Universe’s Quantum Nature

September 11, 2025
Portable Light-Based Brain Monitor Demonstrates Potential for Advancing Dementia Diagnosis

Portable Light-Based Brain Monitor Demonstrates Potential for Advancing Dementia Diagnosis

September 11, 2025

Scientists reinvigorate pinhole camera technology for advanced next-generation infrared imaging

September 11, 2025

BeAble Capital Invests in UJI Spin-Off Molecular Sustainable Solutions to Advance Disinfection and Sterilization Technologies

September 11, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    153 shares
    Share 61 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    66 shares
    Share 26 Tweet 17
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Impact of Electrode Material on Radish Germination

Maize Fungal Diseases: Pathogen Diversity in Ethiopia

Unraveling Gut Microbiota’s Role in Breast Cancer

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.