• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, October 13, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Discovery of crucial clue to accelerate development of carbon-neutral porous materials

Bioengineer by Bioengineer
April 4, 2023
in Chemistry
Reading Time: 2 mins read
0
Professor Wonyoung Choe and Jiyeon Kim
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Metal-organic frameworks (MOFs) have been gaining attention as promising carbon-neutral porous materials, thanks to their high performance in gas storage, separation, and conversion. The geometric building blocks of MOFs, metal clusters and organic linkers, allow chemists to predict and synthesize new structures like assembling LEGO®. However, finding new metal building blocks is still a daunting challenge due to the complex nature of metal ions in synthesis.

Professor Wonyoung Choe and Jiyeon Kim

Credit: UNIST

Metal-organic frameworks (MOFs) have been gaining attention as promising carbon-neutral porous materials, thanks to their high performance in gas storage, separation, and conversion. The geometric building blocks of MOFs, metal clusters and organic linkers, allow chemists to predict and synthesize new structures like assembling LEGO®. However, finding new metal building blocks is still a daunting challenge due to the complex nature of metal ions in synthesis.

A research team, led by Professor Wonyoung Choe at Ulsan National Institute of Science and Technology (UNIST), South Korea, was inspired by the molecular metal clusters previously synthesized before realized in porous materials. This implies one can predict future MOFs by looking closely at their metal building blocks.

The research team compared zirconium metal clusters found in both MOFs and molecules. Zirconium-based MOFs are one of the representative metal-organic porous materials with remarkable stability and a broad range of applications. The researchers identified seven types of zirconium building blocks in MOFs and discovered additional fourteen types of potential metal building blocks.

The research team provided a library of those various molecular clusters for future metal building blocks of MOFs, and suggested practical synthetic strategies. This research is expected to greatly accelerate the discovery of new MOFs by presenting metal cluster candidates whose structures were previously difficult to predict.

“Zirconium metal clusters feature outstanding molecular adsorptive and catalytic properties depending on their structures. Very excited to see what properties the new zirconium cluster will show,” said Dr. Dongsik Nam, the first author of the study.

“This research can be extended to various metal clusters in MOFs beyond zirconium,” noted Professor Wonyoung Choe. “New metal building blocks will provide a big hint to accelerate the discovery of future carbon-neutral porous materials.”

The findings of this research have been published as an Opinion in Trends in Chemistry, a sister journal to Cell, on April 4, 2023. This study has been supported by the National Research Foundation (NRF) of Korea via the Mid-Career Researcher Program, Hydrogen Energy Innovation Technology Development Project, Basic Science Research Program, Science Research Center (SRC), and Global Ph.D. Fellowship (GPF), as well as Ulsan National Institute of Science and Technology (UNIST).

Journal Reference
Dongsik Nam, Jiyeon Kim, and Wonyoung Choe, “Evolution of Zr nodes in metal-organic frameworks,” Trends in Chemistry, (2023).



Journal

Trends in Chemistry

Article Title

Evolution of Zr Nodes in Metal-organic Frameworks

Article Publication Date

4-Apr-2023

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Scientists Unveil Novel Method to Manipulate Mechanical Vibrations in Metamaterials

October 13, 2025
Innovative Chemobiological Platform Converts Renewable Sugars into Key Aromatic Hydrocarbons Found in Petroleum

Innovative Chemobiological Platform Converts Renewable Sugars into Key Aromatic Hydrocarbons Found in Petroleum

October 12, 2025

Harnessing Microwaves to Boost Energy Efficiency in Chemical Reactions

October 10, 2025

Wirth Named Fellow of the American Physical Society

October 10, 2025

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1234 shares
    Share 493 Tweet 308
  • New Study Reveals the Science Behind Exercise and Weight Loss

    104 shares
    Share 42 Tweet 26
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    101 shares
    Share 40 Tweet 25
  • Revolutionizing Optimization: Deep Learning for Complex Systems

    91 shares
    Share 36 Tweet 23

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Mastering Mass Photometry: Essential Tips for Precision

HERC2: A Promising Biomarker in Ovarian Cancer

Enhancing Multiple Sclerosis Care in Older Adults

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 64 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.