• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, October 23, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Discovery of a tripole winter precipitation change pattern around the Tibetan Plateau in the late 1990s

Bioengineer by Bioengineer
May 31, 2022
in Chemistry
Reading Time: 2 mins read
0
Snow-covered mountains on the Tibetan Plateau
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

The Tibetan Plateau (TP) is referred to as the “water tower” of Asia for being home to the headwaters of many major rivers in Asia, including the Yangtze, Yellow, Ganges, and Indus. Therefore, TP precipitation is important for not only local, but regional water resources too. On the other hand, the TP can strongly modulate the Asian climate through dynamic and thermal processes. Previous studies have shown that TP snow in winter/spring can significantly influence the Asian monsoon at interannual to interdecadal time scales. TP snow increased after the late 1970s and decreased after the late 1990s, contributing to simultaneous East Asian summer rainfall changes. However, little attention has been paid to the possible mechanism of TP precipitation change at interdecadal time scales.

Snow-covered mountains on the Tibetan Plateau

Credit: Yanbin Lei

The Tibetan Plateau (TP) is referred to as the “water tower” of Asia for being home to the headwaters of many major rivers in Asia, including the Yangtze, Yellow, Ganges, and Indus. Therefore, TP precipitation is important for not only local, but regional water resources too. On the other hand, the TP can strongly modulate the Asian climate through dynamic and thermal processes. Previous studies have shown that TP snow in winter/spring can significantly influence the Asian monsoon at interannual to interdecadal time scales. TP snow increased after the late 1970s and decreased after the late 1990s, contributing to simultaneous East Asian summer rainfall changes. However, little attention has been paid to the possible mechanism of TP precipitation change at interdecadal time scales.

In an attempt to understand this issue, Associate Prof. Yali Zhu from the Institute of Atmospheric Physics, Chinese Academy of Sciences, has uncovered a tripole winter precipitation change pattern around the TP in the late 1990s. In this pattern, the precipitation decreased over eastern India, to the southern TP, to southern China, and increased in the two regions to the north and south. The results have been published in Atmospheric and Oceanic Science Letters.

Further dynamical diagnosis and numerical experiment results show that tropical Pacific SST changes can induce strengthened Walker circulation over the Pacific, causing ascending motion anomalies over the Indo-Pacific region. The regional meridional–vertical circulation is thus modulated, leading to descending motion anomalies over eastern India, to the southern TP, to southern China. Combined with the effect of the changes in the East Asian westerly jet stream, a tripole precipitation pattern is formed around the TP.

“But other factors can also influence TP precipitation change, and more investigation is needed,” adds Associate Prof. Zhu. Against the background of global warming, the impact of high-latitude climate systems, such as the Arctic sea ice, as well as anthropogenic activity, on TP precipitation, requires further analysis.



Journal

Atmospheric and Oceanic Science Letters

DOI

10.1016/j.aosl.2022.100223

Article Title

A tripole winter precipitation change pattern around the Tibetan Plateau in the late 1990s

Article Publication Date

15-May-2022

Share12Tweet8Share2ShareShareShare2

Related Posts

Innovative ‘Molecular Dam’ Prevents Energy Loss in Nanocrystals

Innovative ‘Molecular Dam’ Prevents Energy Loss in Nanocrystals

October 23, 2025
Physicists Explore Atomic Nuclei Using Innovative Molecule-Based Technique

Physicists Explore Atomic Nuclei Using Innovative Molecule-Based Technique

October 23, 2025

Unlocking Smarter Devices and Safer Drugs: UH Crystals Expert Advances Crystal Formation Control

October 23, 2025

Nanoworld Breakthrough: Heat Transfer Rates Surpass Expectations

October 23, 2025

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1277 shares
    Share 510 Tweet 319
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    308 shares
    Share 123 Tweet 77
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    167 shares
    Share 67 Tweet 42
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    132 shares
    Share 53 Tweet 33

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Auditory Change Processing Markers Unusual in Autism

Innovative Center Pioneers Brighter Future for Trauma Survivors

Exploring Vicarious Trauma in Hospice Nurses

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 66 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.