• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Friday, March 5, 2021
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Discovery of a new fusion gene class may affect the development of cancer

Bioengineer by Bioengineer
October 5, 2017
in Science News
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A fusion gene occurs when a chromosomal break brings two separate genes together into a new functioning gene. So far, the research has focused on protein-coded fusion genes. However, human genes consist not only of protein-coded components but also of components that lack this ability. The latter have not attracted any interest so far, argues Carlos Rovira, cancer researcher and associate professor of oncology at Lund University.

"We study genes that lack the ability to produce proteins, and we were very surprised to discover that this type of study has not been done before – the 'non-coding' components of fusion genes have never been analysed globally in this context. This means that previous analyses have ruled out important genetic components, and that fusion gene data should be re-analysed to possibly find more markers and potential targets for cancer treatment", says Carlos Rovira, who has been researching breast cancer for many years.

So what have the researchers discovered?

"In our study, we discovered a new class of fusion genes that primarily affect the activity of microRNA. These genes are small and often located inside larger protein-coded genes, but they are very short and lack the code required to control protein production. It has already been shown that microRNAs are important for the development of cancer, but the relationship between them and fusion genes was previously unexplored."

Fusion genes are commonly found in patients with leukaemia and soft tissue cancers, and are of great value in terms of diagnosis and treatment. They have also been used for many years for targeted cancer treatment.

The next step will be to study fusion genes in other types of cancer, and see whether a similar discovery can be made in those contexts. "If we receive resources, we will study other types of cancer. It could become a goldmine for new diagnostics and, hopefully, new treatments", says Carlos Rovira.

In the present study, the researchers have collaborated with experts on chromosomal breakage and fusion genes Mattias Höglund, Felix Mitelman and Fredrik Mertens, as well as researcher Helena Persson who analysed the data. Their study includes breast cancer patients from 1 553 patients participating in the major SCAN-B project (Sweden Cancerome Analysis Network – Breast) led by Åke Borg.

###

Media Contact

Carlos Rovira
[email protected]
46-734-203-802
@lunduniversity

http://www.lu.se

https://www.nature.com/articles/s41467-017-01176-1

Share12Tweet7Share2ShareShareShare1

Related Posts

IMAGE

Compression or strain – the material expands always the same

March 5, 2021
IMAGE

Built to last: New copolymer binder to extend the life of lithium ion batteries

March 5, 2021

‘Fungal ghosts’ protect skin, fabric from toxins, radiation

March 5, 2021

When more Covid-19 data doesn’t equal more understanding

March 5, 2021

Leave a Reply Cancel reply

Your email address will not be published.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

POPULAR NEWS

  • IMAGE

    Terahertz accelerates beyond 5G towards 6G

    667 shares
    Share 267 Tweet 167
  • People living with HIV face premature heart disease and barriers to care

    84 shares
    Share 34 Tweet 21
  • Global analysis suggests COVID-19 is seasonal

    38 shares
    Share 15 Tweet 10
  • HIV: an innovative therapeutic breakthrough to optimize the immune system

    36 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

Ecology/EnvironmentClimate ChangeMaterialsBiologyMedicine/HealthcancerInfectious/Emerging DiseasesPublic HealthCell BiologyChemistry/Physics/Materials SciencesGeneticsTechnology/Engineering/Computer Science

Recent Posts

  • Compression or strain – the material expands always the same
  • Built to last: New copolymer binder to extend the life of lithium ion batteries
  • ‘Fungal ghosts’ protect skin, fabric from toxins, radiation
  • When more Covid-19 data doesn’t equal more understanding
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Create New Account!

Fill the forms below to register

All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In