• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, July 22, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Cancer

Discovery of a cancer promoter offers pathway to overcome drug resistance

Bioengineer by Bioengineer
September 12, 2018
in Cancer
Reading Time: 3 mins read
0
ADVERTISEMENT
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: St. Jude Children's Research Hospital

Geneticists at St. Jude Children's Research Hospital have discovered a previously unknown cell growth mechanism that makes a wide range of cancers resistant to rapamycin and related drugs. The finding offers the promise of new drug therapies that can overcome that resistance to treat cancers including leukemia and tumors in the brain and other organs.

The researchers, led by Gerard Grosveld, Ph.D., member and chair of the Department of Genetics, published their findings as an advance online publication of the journal Science Advances.

The enzyme mTOR is a central regulator of cell growth and is often abnormally activated in many cancers to drive their proliferation. The drug rapamycin and its close relatives, called rapalogs, are known to plug into the mTOR molecule to block its action. However, the drugs have proven only marginally effective against cancers, because most are resistant to the drugs.

Researchers had known that the mTOR enzyme was controlled in its many functions by being embedded in two protein complexes, called mTORC1 and mTORC2. However, a chance experiment in the Grosveld laboratory hinted that a third mTOR complex might exist that was assembled by a protein called ETV7. The experiment associated ETV7 over-activation with over-activation of mTOR.

By exploring genomic data on cancers, the researchers found that ETV7 was abnormally activated in a large fraction of many cancers, including acute lymphoblastic leukemia, acute myeloid leukemia, pediatric solid tumors and the brain tumor medulloblastoma. In fact, one publication reported ETV7 to be among the top 10 percent of over-represented proteins in liver cancer.

The researchers' experiments with cell cultures revealed that ETV7 spurred cells to grow faster by hyper activating mTOR. But mysteriously, ETV7 was not part of mTORC1 or mTORC2.

Further experiments revealed that ETV7 directed assembly of a distinctly different complex, which they dubbed mTORC3. The researchers established that mTORC3 was distinct by showing that it lacked components specific to the other two complexes. Also, the investigators found the other complexes lacked ETV7. Importantly, researchers showed that mTORC3 showed complete rapamycin resistance.

Researchers showed that eliminating ETV7 in rapamycin resistant tumor cells rendered them sensitive to rapamycin. In studies with a mouse model developing muscle tumors, investigators found that the production of mTORC3 accelerated tumor formation and made the tumors more aggressive.

The researchers called the discovery of mTORC3 a "paradigm shift" in the study of mTOR that "identifies a novel target for anticancer drug development."

Said Grosveld, "This new complex has not been on anybody's radar screen, even though mTOR complexes have been studied for the last 25 years. We have developed solid data for the existence of mTORC3, and now, we are seeking to isolate and identify the components of the complex."

Future studies will also pursue drugs that specifically inhibit mTORC3 by interfering with ETV7. When combined with drugs to block mTORC1 and mTORC2, such therapies could make a wide range of cancers sensitive to rapalogs.

###

First author of the paper is Franklin Harwood, the other St. Jude authors were, Brendan O'Hara, Monica Cardone, Laura Janke, David Finkelstein, Igor Entin and Leena Paul, Ramon Klein Geltink, formerly of St. Jude and now at the Max Planck Institute of Immunobiology and Epigenetics; and Peter Houghton, of the University of Texas Health Science Center at San Antonio.

The research was supported by the Van Vleet Foundation of Memphis, the National Institutes of Health (R01CA-72999, RO1CA-77776, RO1CA-165995, CA021765) and ALSAC, the fundraising and awareness organization of St. Jude.

Media Contact

Michael Sheffield
[email protected]
901-595-0221
@StJudeResearch

http://www.stjude.org

Original Source

http://www.stjude.org/mTOR-discovery-drug-resistance http://dx.doi.org/10.1126/sciadv.aar3938

Share15Tweet8Share2ShareShareShare2

Related Posts

blank

Hepatoblastoma Trends: Dynamic SDI Analysis

July 5, 2025
Noninvasive Nasopharyngeal Cancer Detection via Gene Methylation

Noninvasive Nasopharyngeal Cancer Detection via Gene Methylation

July 5, 2025

Molecular Biomarkers Predicting Adult Glioma Radiosensitivity

July 5, 2025

Aerobic Exercises Combat Fatigue in Colorectal Cancer

July 5, 2025
Please login to join discussion

POPULAR NEWS

  • Enhancing Broiler Growth: Mannanase Boosts Performance with Reduced Soy and Energy

    Enhancing Broiler Growth: Mannanase Boosts Performance with Reduced Soy and Energy

    73 shares
    Share 29 Tweet 18
  • Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    54 shares
    Share 22 Tweet 14
  • New Organic Photoredox Catalysis System Boosts Efficiency, Drawing Inspiration from Photosynthesis

    54 shares
    Share 22 Tweet 14
  • IIT Researchers Unveil Flying Humanoid Robot: A Breakthrough in Robotics

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Additive Manufacturing of Monolithic Gyroidal Solid Oxide Cells

Machine Learning Uncovers Sorghum’s Complex Mold Resistance

Pathology Multiplexing Revolutionizes Disease Mapping

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.