• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, August 27, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Discovering the unexplored: Synthesis and analysis of a new orthorhombic Sn3O4 polymorph

Bioengineer by Bioengineer
March 15, 2023
in Chemistry
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Oxides of tin (SnxOy) are found in many of modern technologies due to their versatile nature. The multivalent oxidation states of tin—Sn2+ and Sn4+—impart tin oxides with electroconductivity, photocatalysis, and various functional properties. For the photocatalysis application of tin oxides, a narrow bandgap for visible-light absorption is indispensable to utilize a wide range of solar energy. Hence, the discovery of new SnxOy could help improve the efficiency of many environmentally significant photocatalytic reactions like water splitting and CO2 reduction. While there are many theoretical and computational predictions of new stable SnxOy, there still remains a need for experimental studies that can turn the predictions into reality.

New Strategy for Fabrication and Analysis of Unexplored Sn3O4 Phase

Credit: Tokyo Tech

Oxides of tin (SnxOy) are found in many of modern technologies due to their versatile nature. The multivalent oxidation states of tin—Sn2+ and Sn4+—impart tin oxides with electroconductivity, photocatalysis, and various functional properties. For the photocatalysis application of tin oxides, a narrow bandgap for visible-light absorption is indispensable to utilize a wide range of solar energy. Hence, the discovery of new SnxOy could help improve the efficiency of many environmentally significant photocatalytic reactions like water splitting and CO2 reduction. While there are many theoretical and computational predictions of new stable SnxOy, there still remains a need for experimental studies that can turn the predictions into reality.

Taking this as a call to action, researchers from Tokyo Institute of Technology, National Defense Academy, and Mitsubishi Materials Corporation have designed a new tin oxide. In their recent breakthrough published in Angewandte Chemie International Edition, Mr. Y. Liu et al. presented a new optimized hydrothermal synthesis approach that led to the synthesis of a Sn3­O4 polymorph with a previously unreported orthorhombic crystal structure. The research was performed in the Mitsubishi Materials Sustainability Innovation Collaborative Research Cluster with the support of the Tokyo Institute of Technology Open Innovation Platform.

The project leader, Prof. Miyauchi explains the driving force behind the study, “The aim of our study was two-fold. First was the synthesis of a new tin oxide polymorph and the second was applying it for a visible-light sensitive photocatalyst.”

The team set up multiple thermal hydrothermal reactors with the same starting material for preparing Sn3O4. In the first series one set, they altered the degree of filling of the precursor solution by filling 20, 40, 60, and 80% of a 100 ml Teflon liner. For the second series, they kept the degree of filling constant at 20% and the Teflon liners were filled with ambient air, pure oxygen, and pure nitrogen respectively.

The team then carried out Rietveld analysis, X-ray spectroscopy, and first-principles calculations on the products formed. The analysis showed the new Sn3O4 polymorph has the chemical formula of Sn(II)2Sn(IV)O4. Its X-ray diffraction pattern has never been reported and is assigned to an orthorhombic crystal phase based on empirical and computational analyses. The comparative studies for tuning of gas composition and degree of filling showed that the orthorhombic polymorph was only formed when the degree of filling was high or when the gas introduced was inert and has less oxygen. The team hence suggested that paying attention to the oxygen source could be the key to more precise hydrothermal synthesis.

The novel orthorhombic Sn3O4 polymorph reported in this study has a smaller bandgap than a conventional monoclinic Sn3O4, indicating a higher efficiency of absorbing visible light. Furthermore, the conduction band of the orthorhombic polymorph is enough high to drive CO2 reduction reaction.

Hydrothermal method is a widely used method of materials synthesis. This study finds that the often-neglected parameters in hydrothermal synthesis drastically affect the crystal structure. This finding is informative for the discovery of numerous new oxide materials.

 



Journal

Angewandte Chemie International Edition

DOI

10.1002/anie.202300640

Method of Research

Experimental study

Subject of Research

Not applicable

Article Title

Synthesis and Characterization of the Orthorhombic Sn3O4 Polymorph

Article Publication Date

13-Mar-2023

Share12Tweet8Share2ShareShareShare2

Related Posts

Why Beer Foam Stays So Stable: The Science Behind the Perfect Pour

Why Beer Foam Stays So Stable: The Science Behind the Perfect Pour

August 26, 2025
SwRI Scientist Heads Science Team for New NASA Heliophysics AI Foundation Model

SwRI Scientist Heads Science Team for New NASA Heliophysics AI Foundation Model

August 26, 2025

Expanding Azole Chemistry with Precise N-Alkylation

August 26, 2025

Advancing Green Technology with More Efficient and Reliable SiC Devices

August 26, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    148 shares
    Share 59 Tweet 37
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Senior Residents’ Views on Teaching in Primary Care

BFGF Protects Ovaries from CTX Toxicity via Signaling

Continuous Tracking of Left Ventricular dP/dtmax

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.