• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, December 19, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Direct observation of coherence energy scale of Hund’s metal

Bioengineer by Bioengineer
March 9, 2021
in Science News
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: POSTECH

Strongly correlated systems are materials that exhibit strong interactions between electrons, a property unseen in ordinary conductors or insulators. Typical examples include metal-insulator transitions or unconventional high-temperature superconductivity where the resistance becomes zero at high temperatures.

There have been studies to explain this strong interaction between electrons and their characteristic energy scales, but no direct observation on such energy scales through theory or experiments has been reported. To this, the POSTECH-IBS joint research team has succeeded in directly observing the evolution of coherence energy scale of the Hund’s metal in its electronic structure and as a result, clarifying the principle behind it.

The joint research team – consisting of Professor Ji Hoon Shim and Dr. Bo Gyu Jang of POSTECH’s Department of Chemistry, and Professor Changyoung Kim and Dr. Garam Han of Center for Correlated Electron Systems at the Institute for Basic Science (IBS) – has discovered that the kink behavior of electronic band structure of NiS2-xSex, changes according to the degree of selenium (Se) doping. The researchers used the angle-resolved photoemission spectroscopy (ARPES) to verify this. Using the first-principle calculation, they proved for the first time that this kink is due to the Hund’s coupling and that it is linked to the characteristic coherence energy scale in matters. These research findings were recently published in Nature Communications.

Until now, the unique phenomenon that occurs in strongly correlated materials have been usually explained by the electron interactions in single-band model. However, most materials have multiband nature and this has limited understanding the Hund’s coupling effect which should be taken into consideration.

The research team controlled the intensity of the interaction between electrons by controlling the selenium (Se) doping in NiS2-xSex, a Hund’s metal. The researchers observed the evolution of kink behavior in the electronic structure at low temperatures and confirmed that this kink is directly related to the coherence temperature scale of the system, suppressed by the Hund’s coupling.

This study suggests that the traditional picture studied based on a single-band model should be modified in multiband systems in which the Hund’s coupling plays an important role. It is attracting the attention of academic circles for its direct observation of a matter’s characteristic energy scale through its electronic structure at low temperatures.

###

This research was conducted with the support from the SRC Quantum Dynamics Research Center, the Nano-New Materials Core Technology Development Program and the Institute for Basic Science.

Media Contact
Jinyoung Huh
[email protected]

Original Source

http://postech.ac.kr/eng/direct-observation-of-coherence-energy-scale-of-hunds-metal/#post-22295

Related Journal Article

http://dx.doi.org/10.1038/s41467-021-21460-5

Tags: Atomic/Molecular/Particle PhysicsBiochemistryChemistry/Physics/Materials SciencesElectrical Engineering/ElectronicsElectromagneticsMolecular PhysicsNanotechnology/MicromachinesParticle PhysicsResearch/Development
Share13Tweet8Share2ShareShareShare2

Related Posts

Combining Therapies for Adolescent ARFID: A Case Study

December 19, 2025
Unraveling Proanthocyanidin Gene LAR’s Evolutionary Journey

Unraveling Proanthocyanidin Gene LAR’s Evolutionary Journey

December 19, 2025

Corrosion-Free Zn/Br Flow Batteries with Multi-Electron Transfer

December 19, 2025

Novel Quinazoline Derivatives Target KDM6B Selectively

December 19, 2025
Please login to join discussion

POPULAR NEWS

  • Nurses’ Views on Online Learning: Effects on Performance

    Nurses’ Views on Online Learning: Effects on Performance

    70 shares
    Share 28 Tweet 18
  • NSF funds machine-learning research at UNO and UNL to study energy requirements of walking in older adults

    70 shares
    Share 28 Tweet 18
  • Unraveling Levofloxacin’s Impact on Brain Function

    53 shares
    Share 21 Tweet 13
  • MoCK2 Kinase Shapes Mitochondrial Dynamics in Rice Fungal Pathogen

    72 shares
    Share 29 Tweet 18

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Combining Therapies for Adolescent ARFID: A Case Study

Unraveling Proanthocyanidin Gene LAR’s Evolutionary Journey

Corrosion-Free Zn/Br Flow Batteries with Multi-Electron Transfer

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 70 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.