• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, July 22, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Diffusing the methane bomb: We can still make a difference

Bioengineer by Bioengineer
February 6, 2019
in Biology
Reading Time: 3 mins read
0
ADVERTISEMENT
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

The Arctic is warming faster than the rest of the planet, causing carbon containing permafrost, frozen for thousands of years, to thaw and release methane into the atmosphere; a new IIASA study suggests that it is possible to neutralize this threat

Permafrost is soil that remains frozen for two or more consecutive years. It is usually composed of rock, soil, sediments, and varying amounts of ice that bind the elements together. The permafrost of the Arctic landscape represents one of the largest natural reservoirs of organic carbon in the world. When the permafrost thaws, the soil microbes contained in the soil can turn the carbon into carbon dioxide and methane, which are both greenhouse gases that are known to contribute to global warming when released into the atmosphere. Unfortunately, this is exactly what is currently happening as a result of climate change. In fact, the massive amounts of methane that could potentially be released as a result of permafrost thaw, has often been described as a ticking time bomb and has long been a concern for climate scientists.

A study by researchers from IIASA, Canada, Denmark, Norway, and Sweden, however, suggests that it is possible to neutralize the natural gas threat that lies in wait under the Arctic soil. The team looked at several possible future scenarios, including some where the world continues to release manmade carbon and methane emissions into the atmosphere at the current rate, and some where we meet the targets of the Paris Agreement.

In their analysis, the researchers quantified the upper range value for natural methane emissions that can be released from the Arctic tundra, as it allows it to be put in relation to the much larger release of methane emissions from human activities. Although estimates of the release of methane from natural sources in the Arctic and estimates of methane from human activity have been presented separately in previous studies, this is the first time that the relative contribution of the two sources to global warming has been quantified and compared.

“It is important to put the two estimates alongside each other to point out how important it is to urgently address methane emissions from human activities, in particular through a phase out of fossil fuels. It is important for everyone concerned about global warming to know that humans are the main source of methane emissions and that if we can control humans’ release of methane, the problem of methane released from the thawing Arctic tundra is likely to remain manageable,” explains Lena Höglund-Isaksson, a senior researcher with the IIASA Air Quality and Greenhouse Gases Program and one of the authors of the study published in Nature Scientific Reports earlier this week.

According to the researchers, their findings confirm the urgency of a transition away from a fossil fuel based society as well as the importance of reducing methane emissions from other sources, in particular livestock and waste. The results indicate that man-made emissions can be reduced sufficiently to limit methane-caused climate warming by 2100 even in the case of an uncontrolled natural Arctic methane emission feedback. This will however require a committed, global effort towards substantial, but feasible reductions.

“In essence, we want to convey the message that the release of methane from human activities is something we can do something about, especially since the technology for drastic reductions is readily available – often even at a low cost. If we can only get the human emissions under control, the natural emissions should not have to be of major concern,” concludes Höglund-Isaksson.

###

Reference:

Christensen TR, Arora VK, Gauss M, Höglund-Isaksson L, & Parmentier F-JW (2019). Tracing the climate signal: mitigation of anthropogenic methane emissions can outweigh a large Arctic natural emission increase. Nature Scientific Reports DOI:10.1038/s41598-018-37719-9 [pure.iiasa.ac.at/id/eprint/15736]

Media Contact
Ansa Heyl
[email protected]
43-223-680-7574

Related Journal Article

http://www.iiasa.ac.at/web/home/about/news/190206-Tundra-methane.html
http://dx.doi.org/10.1038/s41598-018-37719-9

Tags: Atmospheric ScienceClimate ChangeClimate ScienceGeology/SoilTemperature-Dependent Phenomena
Share12Tweet8Share2ShareShareShare2

Related Posts

Machine Learning Uncovers Sorghum’s Complex Mold Resistance

July 20, 2025
blank

Archaeal Ribosome Shows Unique Active Site, Hibernation Factor

July 17, 2025

Mobile Gene Regulator Balances Arabidopsis Shoot-Root Growth

July 16, 2025

Mobile Transcription Factor Drives Nitrogen Deficiency Response

July 16, 2025
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    57 shares
    Share 23 Tweet 14
  • New Organic Photoredox Catalysis System Boosts Efficiency, Drawing Inspiration from Photosynthesis

    54 shares
    Share 22 Tweet 14
  • Enhancing Broiler Growth: Mannanase Boosts Performance with Reduced Soy and Energy

    73 shares
    Share 29 Tweet 18
  • IIT Researchers Unveil Flying Humanoid Robot: A Breakthrough in Robotics

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Additive Manufacturing of Monolithic Gyroidal Solid Oxide Cells

Machine Learning Uncovers Sorghum’s Complex Mold Resistance

Pathology Multiplexing Revolutionizes Disease Mapping

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.