• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Diabolical points in coupled active cavities with quantum emitters

Bioengineer by Bioengineer
January 15, 2020
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Jingnan Yang, Chenjiang Qian, Xin Xie, Kai Peng, Shiyao Wu, Feilong Song, Sibai Sun, Jianchen Dang, by Yang Yu, Shushu Shi, Jiongji He, Matthew J. Steer, Iain G. Thayne, Bei-Bei…


DPs originate from parameter-dependent degeneracies of a system’s energy lev-els. Due to the topological Berry phase, DPs play a fundamental role in physical and chemical dynamics, such as peculiar photonics in 2D materials or condensed matter systems which provide topological quantum processing. Meanwhile, active emitters in photonic structures are essential for the coherent electron-photon interface in the quantum photonic network. Therefore, realizing DPs in active photonic structures can greatly benefit the implementing of quantum information processing and scaling up in the quantum network. However, multiple quantum emitters in active cavities are usu-ally randomly positioned, thus result in symmetric and uncontrollable backscattering which forbids a degeneracy with only trivial eigenstates. As a result, the coherent in-terface between electrons and photons at DPs is hard to achieve.

In a paper newly published in Light Science & Application, scientists from Insti-tute of Physics, Chinese Academy of Sciences and co-workers demonstrate DPs in two strongly coupled microdisks with embedded quantum dots (QDs). Due to that the individual control of each QD is impossible, a macroscopical control of backscat-tering was proposed based on the competition between two types of scatterers (QDs and defects), which solves the problem of low controllability. Through optimization, a balanced competition was successfully achieved with backscattering coupling strength from negative to positive in single microdisks, clearly demonstrated by the experi-mental statistics. Furthermore, compared to single microdisks with two-dimensional Hamiltonians, two strongly coupled microdisks have supermodes with four-dimensional Hamiltonians. The spectra are affected by not only the absolute backscat-tering coupling strengths but also their signs. Thus, coupled cavities are a good plat-form to study the fundamental physics of backscattering and make DP possible. Her-mitian degeneracies at DPs were observed when the backscattering coupling strengths in two microdisks have the same absolute value but in the opposite signs.

At DP of two coupled cavities, the system has eigenspaces in which the phases of two microdisks have a nonlinear correlation, indicating a controllable phase shift between them. Therefore, the two coupled cavities are potential in directional laser and quantum phase control. Moreover, when the interaction between emitters and cavities is improved in future, this system can be predicted with an important role in studying quantum DP behaviors and integrating photons at DPs into quantum net-works.

“The randomly positioned quantum dots and defects are very hard to control and can result in symmetric backscattering. We introduced the macroscopical control based on the competition between different types of scatterers and achieved backscat-tering coupling strength with both negative or positive values.”

“We experimentally demonstrated one pair of DPs in the spectra with two strongly coupled microdisks, which are different from the ordinary DP without backscattering or in a single perfect microcavity. DPs here can produce nonlinear cor-relation with a phase shift between two microdisks, with potential application in opti-cal quantum information processing, topological optics and fundamental physics at DPs using photonic structures.” The scientists said.

###

Media Contact
Xiulai Xu
[email protected]

Related Journal Article

http://dx.doi.org/10.1038/s41377-020-0244-9

Tags: Chemistry/Physics/Materials SciencesOptics
Share13Tweet8Share2ShareShareShare2

Related Posts

blank

Breakthrough in Environmental Cleanup: Scientists Develop Solar-Activated Biochar for Faster Remediation

February 7, 2026
blank

Cutting Costs: Making Hydrogen Fuel Cells More Affordable

February 6, 2026

Scientists Develop Hand-Held “Levitating” Time Crystals

February 6, 2026

Observing a Key Green-Energy Catalyst Dissolve Atom by Atom

February 6, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Digital Health Perspectives from Baltic Sea Experts

Florida Cane Toad: Complex Spread and Selective Evolution

Exploring Decision-Making in Dementia Caregivers’ Mobility

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.