• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, November 4, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Development of a large CO2 conversion system, a core carbon neutrality technology

Bioengineer by Bioengineer
April 7, 2021
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Features a high-performance, sea urchin-shaped nano copper catalyst electrode which provides a high selectivity for CO2 conversion; the realization of an electrochemical CO2 conversion stack system has laid the groundwork for commercialization

IMAGE

Credit: Korea Institute of Science and Technology(KIST)

Studies on electrochemical CO2 conversion systems which can be used to obtain useful chemicals through conventional petrochemical processes while eliminating CO2, without polluting the environment, are essential for creating a carbon-neutral society. While significant progress has been made through a number of relevant studies, thus far, they have only been laboratory-scale in size. In fact, there are still many roadblocks to industrial application, such as the scaling up and development of suitable catalysts and electrodes.

The Korea Institute of Science and Technology (KIST), announced that a research team of Clean Energy Research Center, led by Dr. Hyung-Suk Oh, Dr. Yoon-Jung Hwang, and Dr. Woong-Hui Lee, has developed a sea urchin-shaped nano copper catalyst for a high-efficiency electrochemical CO2 conversion system that yields ethylene and ethanol, as well as a related system for mass production of the catalyst.

The urchin-shaped catalyst developed by the research team at KIST is capable of producing large quantities of ethylene, a petroleum-based substance used to manufacture various everyday products, including plastics, synthetic rubber, and construction materials. The catalyst features an array of irregularly-shaped needles and is similar in appearance to a sea urchin. This unique design enables increased catalytic activity by way of the sharp needle tips. Use of this catalyst conferred higher selective ethylene production at a lower voltage than conventional copper catalysts, improving the yield of ethylene by over 50%. Moreover, the establishment of a mass production system through the stacking of multiple layers of CO2 conversion cells confirms the potential for commercialization of the catalyst.

The research team performed various real-time (in-situ/operando) analyses to observe the chemical properties of the catalyst during reactions. Their results confirmed that carbon dioxide conversion efficiency increased as a result of the higher copper hydroxide and copper oxide content due to the alkaline substances which had been added to the team’s catalyst. Based on their findings, it was identified that increasing the proportion of copper hydroxide and copper oxide during reactions is key to increasing the efficiency of ethylene production, which presented direction for designing the catalyst in future studies.

Dr. Hyung-Suk Oh of KIST stated that “this study has enabled us to significantly enhance the performance and scale of electrochemical CO2 conversion systems through the development of a sea urchin-shaped nano copper catalyst with added alkaline substances for large surface area conversion applications, which also presented direction for future research and development.” He also mentioned that “the findings of this study are expected to make a substantial contribution to the commercialization of an electrochemical carbon dioxide conversion system.”

###

The study was conducted as part of KIST’s key project and Next-Generation Carbon Resources Project supported by the Ministry of Science and ICT (MSIT). The findings of this study were published in the latest issue of the international journal “Nano Energy.”

Media Contact
Do-Hyun Kim
[email protected]

Related Journal Article

http://dx.doi.org/10.1016/j.nanoen.2021.105859

Tags: Chemistry/Physics/Materials SciencesTechnology/Engineering/Computer Science
Share12Tweet8Share2ShareShareShare2

Related Posts

Surprisingly Elevated Levels of Forever Chemicals Discovered in Deceased Sea Otters

Surprisingly Elevated Levels of Forever Chemicals Discovered in Deceased Sea Otters

November 4, 2025
Next-Generation Satellite Mega-Constellations Empowered by Advanced Laser Links

Next-Generation Satellite Mega-Constellations Empowered by Advanced Laser Links

November 3, 2025

Breakthrough “Self-Tuning” Film Sets Stage for Next-Generation Wireless and Radar Technologies

November 3, 2025

From Shielding to Speed: Scientists Reveal Hidden Chemistry Powering Record-Breaking Sodium-Chlorine Batteries

November 3, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1297 shares
    Share 518 Tweet 324
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    313 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    204 shares
    Share 82 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    137 shares
    Share 55 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

How Implementation Science Boosts Clinical Guidelines Adoption

New Study Reveals How Stress Hormones Silence Key Brain Genes via Chromatin-Bound RNAs

New Study Uncovers How Gut Microbiota Impact Sleep Disorders via the Brain-Gut Axis

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.