• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, September 10, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Development of a broadband mid-infrared source for remote sensing

Bioengineer by Bioengineer
March 31, 2021
in Chemistry
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: National Institute for Fusion Science

A research team of the National Institutes of Natural Sciences, National Institute for Fusion Science and Akita Prefectural University have successfully demonstrated a broadband mid-infrared (MIR) source with a simple configuration. This light source generates highly-stable broadband MIR beam at 2.5-3.7 μm wavelength range maintaining the brightness owing to its high-beam quality. Such a broadband MIR source facilitates a simplified environmental monitoring system by constructing a MIR fiber-optic sensor, which has the potential for industrial and medical applications.

In the MIR wavelength region, there are many strong absorption lines of molecules due to the change of their rotational and vibrational states. Therefore, by using MIR sources, we have promising opportunities to develop sensitive remote monitoring systems of practical use. In particular, a fiber-optic sensor based on MIR absorption spectroscopy has great potential as the next-generation gas detecting device, e.g., for an exhaust gas monitor at an industrial plant, breath analysis for medical purposes, and other uses. However, there is the remaining issue of the absence of a suitable MIR source exhibiting broadband spectrum and high-beam quality. In this work, the research team has demonstrated an ultra-broadband amplified spontaneous emission (ASE) source at the MIR region, which meets the requirements for developing the fiber-optic sensor.

In order to obtain the MIR emission, the research team has developed optical fiber made of fluoride glass co-doped with trivalent ions of Er (the atomic number 68) and Dy (66). This fiber enables a simple and low-cost configuration of ASE light source with diode-pumping (Fig. 1) by means of energy transfer from Er^3+ to Dy^3+. A broadband and moderate-power ASE light source of 2.5-3.7 μm wavelength (Fig. 2) was experimentally investigated for the optimum design of fluoride fiber in terms of ion concentration, fiber length, pumping configuration, and pumping power. In addition, this light source exhibits excellent beam quality resulting in high-coupling efficiency with an external optical fiber.

Assistant Professor Hiyori Uehara in the research team states that, “Our new light source can facilitate a simplified MIR fiber-optic sensor device for various practical applications. For example, an environmental monitoring system in the industrial plant, stand-off detection of hazardous objects, disease diagnosis by breath analysis, inspection of fiber-optic devices, and others. Ongoing detailed research demonstrating highly-sensitive multiple-gas detection using a MIR fiber sensor will be performed and reported in the near future.”

###

Science Contact:

Dr. Hiyori Uehara, NIFS Assistant Professor

[email protected]

Media Contact
Kentaro Yaji
[email protected]

Related Journal Article

http://dx.doi.org/10.1038/s41598-021-84950-y

Tags: Biomedical/Environmental/Chemical EngineeringDiagnosticsEcology/EnvironmentIndustrial Engineering/ChemistryOpticsTechnology/Engineering/Computer Science
Share12Tweet8Share2ShareShareShare2

Related Posts

Gravitational Waves Confirm Hawking and Kerr Black Hole Theories

Gravitational Waves Confirm Hawking and Kerr Black Hole Theories

September 10, 2025
blank

A Decade Later: Gravitational Waves Confirm Stephen Hawking’s Black Hole Area Theorem

September 10, 2025

When Magnetic Moments Clash: How Quantum Mechanics Unlocks the Secrets of Iron Catalysts

September 10, 2025

Modular Organocatalysis Creates BN Isosteres via Wolff Rearrangement

September 10, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    151 shares
    Share 60 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    59 shares
    Share 24 Tweet 15
  • First Confirmed Human Mpox Clade Ib Case China

    56 shares
    Share 22 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Faster Diagnostic Scans Could Revolutionize Prostate Cancer Detection for Millions

Gravitational Waves Confirm Hawking and Kerr Black Hole Theories

Designed to Learn: How Early Brain Structure Sets the Stage for Efficient Learning

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.