• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, September 9, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Developing new techniques to build biomaterials

Bioengineer by Bioengineer
July 6, 2021
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Lorna Dougan/Phospho Animations

Scientists at the University of Leeds have developed an approach that could help in the design of a new generation of synthetic biomaterials made from proteins.

The biomaterials could eventually have applications in joint repair or wound healing as well as other fields of healthcare and food production.  

But one of the fundamental challenges is to control and fine tune the way protein building blocks assemble into complex protein networks that form the basis of biomaterials.  

Scientists at Leeds are investigating how changes to the structure and mechanics of individual protein building blocks – changes at the nanoscale – can alter the structure and mechanics of the biomaterial at a macro level while preserving the biological function of the protein network.  

In a paper published by the scientific journal ACS Nano, the researchers report that they were able to alter the structure of a protein network by removing a specific chemical bond in the protein building blocks. They called these bonds the “protein staples”. 

With the protein staples removed, the individual protein molecules unfolded more easily when they connect together and assemble into a network. This resulted in a network with regions of folded protein connected by regions containing the unfolded protein resulting in very different mechanical properties for the biomaterial.  

Professor Lorna Dougan, from the School of Physics and Astronomy at Leeds, who supervised the research, said: “Proteins display amazing functional properties. We want to understand how we can exploit this diverse biological functionality in materials which use proteins as building blocks. 

“But to do that we need to understand how changes at a nano scale, at the level of individual molecules, alters the structure and behaviour of the protein at a macro level.”  

Dr Matt Hughes, also from the School of Physics and Astronomy and lead author of the paper, said: “Controlling the protein building block’s ability to unfold by removing the “protein staples” resulted in significantly different network architectures with markedly different mechanical behaviour and this demonstrates that unfolding of the protein building block plays a defining role in the architecture of protein networks and the subsequent mechanics.” 

The researchers used facilities at the Astbury Centre for Structural Molecular Biology and School of Physics and Astronomy at Leeds and the ISIS Neutron Muon Source facility at the STFC Rutherford Appleton Laboratory in Oxfordshire. Using beams of neutrons, it allowed them to identify critical changes to the protein network’s structure when the nano-staples where removed.

In conjunction with the experimental work, Dr Ben Hanson, a Research Associate in the School of Physics and Astronomy at Leeds, modelled the structural changes taking place. He found that it was specifically the act of protein unfolding during network formation, that was crucial in defining the network architecture of the protein hydrogels.   

Professor Dougan added: “The ability to change the nanoscale properties of protein building blocks, from a rigid, folded state to a flexible, unfolded state, provides a powerful route to creating functional biomaterials with controllable architecture and mechanics.”   

###

The research was conducted with assistance from Professor David Brockwell and Sophie Cussons, Research Technician, at the Astbury Centre for Structural Molecular Biology at Leeds.

Further information

Top image shows a schematic visualisation of a network of proteins where some of the protein staples have been removed. Unfolded protein building blocks are colourd yellow and they are connected with folded protein building blocks. Image credit: Lorna Dougan and Phospho animations.

The paper – Control of Nanoscale in situ Protein Unfolding Defines Network Architecture and Mechanics of Protein Hydrogels – has been published online at ACS Nano: https://pubs.acs.org/doi/pdf/10.1021/acsnano.1c00353 

The project was supported by a grant from the Engineering and Physical Sciences Research Council (EP/P02288X/1). For further details, please contact David Lewis in the media office at the University of Leeds: [email protected].

Media Contact
David Lewis
[email protected]

Related Journal Article

http://dx.doi.org/10.1021/acsnano.1c00353

Tags: Biomechanics/BiophysicsChemistry/Physics/Materials SciencesMaterialsMolecular Physics
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Optimizing Energy-Level Alignment in Perovskite Solar Cells: Insights from an Energy Flow Perspective

September 9, 2025
blank

Tiny Yet Mighty: Metamaterial Lenses Revolutionize Phones and Drones

September 9, 2025

UZH Device Pioneers Search for Light Dark Matter

September 8, 2025

Unlocking Insulators: How Light Pulses Set Electrons Free

September 8, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    151 shares
    Share 60 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • First Confirmed Human Mpox Clade Ib Case China

    56 shares
    Share 22 Tweet 14
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    48 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Population Substructure Challenges Kinship Testing in China

Utah NICUs Survey Ahead of 2025 Cord Blood Report

Forecasting Carbapenem-Resistant Infections in Pediatric Liver Transplants

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.