• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, September 11, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Detection of PCBs and their metabolites (OH-PCBs) in the fetal brain of a Japanese macaque

Bioengineer by Bioengineer
September 14, 2020
in Chemistry
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Mother to fetus transfer of OH-PCBs in the Japanese macaque: Extrapolation of Exposure Scenarios for Humans

IMAGE

Credit: Center for Marine Environmental Studies (CMES), Ehime University

Hydroxylated polychlorinated biphenyls (OH-PCBs) are metabolites of PCBs and known endocrine disruptors in humans. Of particular concern regarding this kind of effect has been the disruption of the thyroid hormone homeostasis by OH-PCBs. Some OH-PCB congeners are involved in disrupting TH transport by competitive binding to the thyroid hormone transport protein, transthyretin (TTR) in mammalian blood. Prenatal OH-PCBs exposure may disrupt fetal brain development during the critical period of thyroid hormone action. Congenital hypothyroidism causes cretinism and mental retardation, and an insufficient thyroid hormone signaling has been suggested as one of the causes of attention deficit/hyper activity disorder (ADHD). However, there have been limited studies on the OH-PCBs transfer to the fetal brain, particularly in primates.

In this study, we selected the Japanese macaque (Macaca fuscata) as a model animal for the fetal transfer of OH-PCBs in humans, and revealed OH-PCB concentrations and their relationships in maternal and fetal blood, liver, and brain. L-thyroxine (T4)-like OH-PCBs, including 4OH-CB187 as a major congener in humans, were found in high proportions in the blood, liver, brain, and placenta of pregnant Japanese macaques. OH-PCBs were detected in the fetal brain (7.2 ~ 32 pg/g wet wt.), indicating their transfer to the brain in early pregnancy. 4OH-CB187 and 4OH-CB202 of OH-PCB congeners were the major congeners found in the fetal brain, indicating that these T4-like OH-PCBs are transported from maternal blood to the fetal brain via the placenta. These results are important as a potential model for further assessing and understanding of the ability of OH-PCBs to alter neurodevelopment in the human fetus.

In this study, OH-PCBs concentrations in the fetal brains of the Japanese macaques were comparable to the levels that suppressed the T3-induced transcriptional activation of the thyroid hormone receptor and caused neurodevelopmental abnormalities in cerebellar Purkinje cells of mice in a previous study. The brain of the human fetus may be exposed to higher PCB contamination levels than the Japanese macaque fetus; OH-PCB concentrations may thus exceed the levels that induce adverse effects on neurodevelopment. Considering the chronic exposure to PCBs in humans, further studies on the effects of their long-term exposure on fetal brain function are needed.

###

Media Contact
Public Relations Division
[email protected]

Original Source

https://pubs.acs.org/doi/10.1021/acs.est.0c01805

Related Journal Article

http://dx.doi.org/10.1021/acs.est.0c01805

Tags: BiochemistryEcology/EnvironmentEnvironmental HealthMedicine/HealthneurobiologyNeurochemistryToxicology
Share12Tweet8Share2ShareShareShare2

Related Posts

Perseverance Rover Reveals New Insights into Ancient Martian Chemistry

Perseverance Rover Reveals New Insights into Ancient Martian Chemistry

September 10, 2025
Unveiling the True Mechanisms of Catalysis in Metallic Nanocatalysts

Unveiling the True Mechanisms of Catalysis in Metallic Nanocatalysts

September 10, 2025

Innovative Method Paves the Way for Unhindered Light Guidance

September 10, 2025

Most Precise Confirmation of Hawking’s Area Theorem from Clearest Black Hole Collision Signal Yet

September 10, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    151 shares
    Share 60 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    63 shares
    Share 25 Tweet 16
  • First Confirmed Human Mpox Clade Ib Case China

    56 shares
    Share 22 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Direct Piperazine Carbamate Reduction Enables CO2 Electrolysis

Ultrasound-Activated Phosphorescent Carbon Nanodots Innovated

Rapid Spread of Drug-Resistant Fungus Candidozyma auris in European Hospitals Prompts Urgent Warning from ECDC

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.