• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, December 1, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Detection of PCBs and their metabolites (OH-PCBs) in the fetal brain of a Japanese macaque

Bioengineer by Bioengineer
September 14, 2020
in Chemistry
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Mother to fetus transfer of OH-PCBs in the Japanese macaque: Extrapolation of Exposure Scenarios for Humans

IMAGE

Credit: Center for Marine Environmental Studies (CMES), Ehime University

Hydroxylated polychlorinated biphenyls (OH-PCBs) are metabolites of PCBs and known endocrine disruptors in humans. Of particular concern regarding this kind of effect has been the disruption of the thyroid hormone homeostasis by OH-PCBs. Some OH-PCB congeners are involved in disrupting TH transport by competitive binding to the thyroid hormone transport protein, transthyretin (TTR) in mammalian blood. Prenatal OH-PCBs exposure may disrupt fetal brain development during the critical period of thyroid hormone action. Congenital hypothyroidism causes cretinism and mental retardation, and an insufficient thyroid hormone signaling has been suggested as one of the causes of attention deficit/hyper activity disorder (ADHD). However, there have been limited studies on the OH-PCBs transfer to the fetal brain, particularly in primates.

In this study, we selected the Japanese macaque (Macaca fuscata) as a model animal for the fetal transfer of OH-PCBs in humans, and revealed OH-PCB concentrations and their relationships in maternal and fetal blood, liver, and brain. L-thyroxine (T4)-like OH-PCBs, including 4OH-CB187 as a major congener in humans, were found in high proportions in the blood, liver, brain, and placenta of pregnant Japanese macaques. OH-PCBs were detected in the fetal brain (7.2 ~ 32 pg/g wet wt.), indicating their transfer to the brain in early pregnancy. 4OH-CB187 and 4OH-CB202 of OH-PCB congeners were the major congeners found in the fetal brain, indicating that these T4-like OH-PCBs are transported from maternal blood to the fetal brain via the placenta. These results are important as a potential model for further assessing and understanding of the ability of OH-PCBs to alter neurodevelopment in the human fetus.

In this study, OH-PCBs concentrations in the fetal brains of the Japanese macaques were comparable to the levels that suppressed the T3-induced transcriptional activation of the thyroid hormone receptor and caused neurodevelopmental abnormalities in cerebellar Purkinje cells of mice in a previous study. The brain of the human fetus may be exposed to higher PCB contamination levels than the Japanese macaque fetus; OH-PCB concentrations may thus exceed the levels that induce adverse effects on neurodevelopment. Considering the chronic exposure to PCBs in humans, further studies on the effects of their long-term exposure on fetal brain function are needed.

###

Media Contact
Public Relations Division
[email protected]

Original Source

https://pubs.acs.org/doi/10.1021/acs.est.0c01805

Related Journal Article

http://dx.doi.org/10.1021/acs.est.0c01805

Tags: BiochemistryEcology/EnvironmentEnvironmental HealthMedicine/HealthneurobiologyNeurochemistryToxicology
Share12Tweet8Share2ShareShareShare2

Related Posts

Neighboring Groups Speed Up Polymer Self-Deconstruction

Neighboring Groups Speed Up Polymer Self-Deconstruction

November 28, 2025
blank

Activating Alcohols as Sulfonium Salts for Photocatalysis

November 26, 2025

Carbonate Ions Drive Water Ordering in CO₂ Reduction

November 25, 2025

Isolable Germa-Isonitrile with N≡Ge Triple Bond

November 24, 2025
Please login to join discussion

POPULAR NEWS

  • New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    203 shares
    Share 81 Tweet 51
  • Scientists Uncover Chameleon’s Telephone-Cord-Like Optic Nerves, A Feature Missed by Aristotle and Newton

    120 shares
    Share 48 Tweet 30
  • Neurological Impacts of COVID and MIS-C in Children

    106 shares
    Share 42 Tweet 27
  • MoCK2 Kinase Shapes Mitochondrial Dynamics in Rice Fungal Pathogen

    67 shares
    Share 27 Tweet 17

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Serum Intestinal Fatty Acid Protein Rises in NEC

RNA Interference Shows Promise for Hepatitis B Cure

Advanced Hybrid Model Boosts Brain Tumor Classification

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.