• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, September 18, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Detecting, predicting, and preventing aortic ruptures with computational modeling

Bioengineer by Bioengineer
April 4, 2023
in Chemistry
Reading Time: 3 mins read
0
AAA development and ruptured stage and simulated results
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

WASHINGTON, April 4, 2023 – An abdominal aortic aneurysm (AAA) causes the wall of a person’s aorta, the largest artery in the body, to weaken and bulge outward. If left untreated, it can continue to grow and eventually rupture, which can lead to life-threatening bleeding.

AAA development and ruptured stage and simulated results

Credit: AAA development and ruptured stage (left) and simulated results (right). Credit: Cardiovascular Biomechanics Lab

WASHINGTON, April 4, 2023 – An abdominal aortic aneurysm (AAA) causes the wall of a person’s aorta, the largest artery in the body, to weaken and bulge outward. If left untreated, it can continue to grow and eventually rupture, which can lead to life-threatening bleeding.

According to some estimates, up to 80% of patients who experience a ruptured AAA will die before they reach the hospital or during surgery. But early intervention can prevent rupture, improve outcomes, and avoid death.

In Physics of Fluids, by AIP Publishing, researchers from the Indian Institute of Technology (BHU) Varanasi and Indian Institute of Technology Kanpur made a computational model of the cardiovascular system in order to predict early AAA rupture and monitor patients’ blood vessel conditions. The team investigated the effect of realistic, patient-specific AAA shapes on the hemodynamics of pulsatile Newtonian fluids in an aortofemoral artery under normal and diseased conditions.

Predicting the risk of AAA rupture involves a combination of imaging studies, such as ultrasound, CT scans, and MRI, and hemodynamics, as well as clinical factors such as age, sex, smoking history, and family history of AAA.

“If an AAA is detected early, treatment options such as surgical repair or endovascular stent grafting are available to prevent rupture,” said the authors. “These treatments are both effective at reducing the risk of rupture and improving survival rates.”

Using image-based computational blood dynamics, the researchers mimicked specific health conditions and investigated various hemodynamic parameters. Their patient-specific geometric models of a human aortofemoral artery were constructed from 3D medical imaging data. To solve the blood flow governing equations under the pulsating conditions caused by the heart’s beating, they used finite element-based simulations.

The team found that aneurysm size alters the blood flow velocity distribution. In addition, flow separation occurs during systolic deceleration, and the vortex begins to travel in the aneurysm sac. Among other complex dynamics, this may influence the blood circulation of lower extremities.

“In the future, such computational work will help in development of digital twins of the cardiovascular system,” said Kumar.

Digital twins are virtual patient representations that receive real-time updates on a variety of data variables and help doctors better forecast disease and choose the best course of therapy.

###

The article “Influence of abdominal aortic aneurysm shape on hemodynamics in human aortofemoral arteries: A transient open-loop study” is authored by Sumit Kumar, B.V. Rathish Kumar, and Sanjay Kumar Rai. It will appear in Physics of Fluids on April 4, 2023 (DOI: 10.1063/5.0139085). After that date, it can be accessed at https://doi.org/10.1063/5.0139085.

ABOUT THE JOURNAL

Physics of Fluids is devoted to the publication of original theoretical, computational, and experimental contributions to the dynamics of gases, liquids, and complex fluids. See https://aip.scitation.org/journal/phf.

###



Journal

Physics of Fluids

DOI

10.1063/5.0139085

Article Title

Influence of abdominal aortic aneurysm shape on hemodynamics in human aortofemoral arteries: A transient open-loop study

Article Publication Date

4-Apr-2023

Share12Tweet8Share2ShareShareShare2

Related Posts

Organic Cofactor Enables Energy-Transfer Photoproximity Labeling

Organic Cofactor Enables Energy-Transfer Photoproximity Labeling

September 18, 2025
UVA Secures $16M DOE Grant to Establish Cutting-Edge Predictive Science Simulation Center

UVA Secures $16M DOE Grant to Establish Cutting-Edge Predictive Science Simulation Center

September 17, 2025

A Motor-Sparing Local Anesthetic: Is It Within Reach?

September 17, 2025

Protein Chemist Secures NIH Grant to Explore Mechanisms of Inflammation

September 17, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    155 shares
    Share 62 Tweet 39
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    117 shares
    Share 47 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    67 shares
    Share 27 Tweet 17
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Revolutionary Fusion Technique Predicts NSCLC Recurrence

Telemedicine Payment Parity Linked to Reduced Overdose Rates

Can Hayabusa2 Land? New Research Shows Target Asteroid is Smaller and Moves Quicker Than Previously Believed

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.