• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, August 7, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Science

Detecting pollution with a compact laser source

Bioengineer by Bioengineer
April 4, 2019
in Science
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Alain Herzog / EPFL

Researchers at EPFL have come up with a new middle infrared light source that can detect greenhouse and other gases, as well as molecules in a person’s breath. The compact system, which resembles a tiny suitcase, contains just two parts: a standard laser together with a photonic chip measuring a few millimeters across. The research is detailed in an article published in Nature Communications.

The mid-infrared spectrum is especially useful for scientists because, at this wavelength range, light can detect particles that play an important role in the environment and in human health. Until now, however, infrared laser systems have proven difficult to transport because they involve complex, damage-prone hardware.

The new technology, developed by researchers at EPFL, could be a game-changer. The team took a commercially available fiber laser and combined it with a micrometer waveguide chip to reliably generate light waves in the mid-infrared spectrum. They then added a spectrometer to demonstrate the potential of this light source, successfully detecting the presence and concentration of acetylene, a colorless and highly flammable gas.

How does it work?

The system uses a compact and robust fiber laser that emits light in a specific wavelength range. The beam is directed through a waveguide, measuring one micrometer (0.001 mm) across and half a millimeter long, which can alter the frequency of the light as it passes through. The system produces light in the mid-infrared spectrum, retaining 30% of the original signal strength. The researchers can even tune the wavelength of the light by adjusting the waveguide’s geometry.

“This device sets a new benchmark for efficiency,” says Davide Grassani, one of the authors of the paper. “This is the first time anyone has created a fully integrated spectroscopic laser source. It does away with the painstaking process of precisely aligning all the parts in a conventional laser system.”

The breakthrough came after the team refined key aspects of the system’s design – the waveguide geometry and material, and the wavelength of the original laser source. “Coming up with such a simple yet efficient and sturdy system involved a lot of design work,” says Camille Brès, project coordinator and head of the Photonic Systems Laboratory, part of EPFL’s School of Engineering.

On-chip spectroscopy

This advancement paves the way for miniaturized mid-IR technologies – a wavelength range that scientists rarely get to work with. “Once we’ve developed the system further, we could well see on-chip detectors that scientists can easily carry out into the field,” adds Brès.

The technology draws on research conducted at the Photonic Systems Laboratory, headed by Camille Brès, and the Laboratory of Photonics and Quantum Measurements, headed by Tobias Kippenberg (STI/SB).

###

Media Contact
Camille Brès
[email protected]

Tags: Atmospheric ScienceBiomedical/Environmental/Chemical EngineeringElectrical Engineering/ElectronicsMedicine/HealthPollution/RemediationTechnology/Engineering/Computer Science
Share12Tweet8Share2ShareShareShare2

Related Posts

Five or more hours of smartphone usage per day may increase obesity

July 25, 2019
IMAGE

NASA’s terra satellite finds tropical storm 07W’s strength on the side

July 25, 2019

NASA finds one burst of energy in weakening Depression Dalila

July 25, 2019

Researcher’s innovative flood mapping helps water and emergency management officials

July 25, 2019
Please login to join discussion

POPULAR NEWS

  • blank

    Neuropsychiatric Risks Linked to COVID-19 Revealed

    75 shares
    Share 30 Tweet 19
  • Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    61 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    46 shares
    Share 18 Tweet 12
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    42 shares
    Share 17 Tweet 11

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

White Matter Lesions Signal Cerebral Palsy Risk

Co-cultivating Pseudomonas and Bacillus for Enhanced Biocontrol

Rewrite Behavioral, Psychological, and Physical Predictors of Adolescent Drug Use in South Korea: Insights Obtained Using Machine Learning as a headline for a science magazine post, using no more than 8 words

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.