• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, September 24, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Detecting dementia’s damaging effects before it’s too late

Bioengineer by Bioengineer
May 13, 2019
in Health
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

By studying a rare form of dementia, researchers might have found a way to detect neurodegeneration before brain cells are lost for good; earlier detection could provide therapeutic drug treatments a chance to work

IMAGE

Credit: Aneta Kielar

Scientists might have found an early detection method for some forms of dementia, according to new research by the University of Arizona and the University of Toronto’s Baycrest Health Sciences Centre.

According to the study published in the journal Neuropsychologia last month, patients with a rare neurodegenerative brain disorder called Primary Progressive Aphasia, or PPA, show abnormalities in brain function in areas that look structurally normal on an MRI scan.

“We wanted to study how degeneration affects function of the brain,” said Aneta Kielar, the study’s lead author and assistant professor in the UA Department of Speech, Language and Hearing Sciences.

But what she and her team discovered was that the brain showed functional defects in regions that were not yet showing structural damage on MRI.

Structural MRI provides 3D visualization of brain structure, which is useful when studying patients with diseases that literally cause brain cells to wither away, like PPA.

Magnetoencephalography, or MEG, on the other hand, “gives you really good spatial precision as to where the brain response originates. We want to know if the decreased brain function is coming from the areas that are already atrophied or areas in an earlier stage of decline,” said Jed Meltzer, the study’s senior author and an assistant professor of psychology at the University of Toronto.

Kielar and her colleagues compared brain scans of patients with PPA to healthy controls while both groups performed language tasks. The researchers also imaged participants’ brains while at rest. The functional defects were related to worse performance in the tasks, as individuals with PPA lose their ability to speak or understand language while other aspects of cognition are typically preserved.

Identifying the discrepancy between a PPA brain’s structural and functional integrity could be used as an early-detection method.

This is promising because “many drugs designed to treat dementia are proving to be not really affective and that might be because we’re detecting the brain damage too late,” Kielar said. “Often, people don’t come in for help until their neurons are already dead. We can do compensation therapies to delay disease progress, but once brain cells are dead, we can’t get them back.” This technique could allow patients to get ahead of the damage.

Kielar acknowledged that this was a small study, which is partially because PPA is such a rare form of dementia, and that further investigation is needed.

Next, she hopes to uncover why this structural and functional mismatch is happening in PPA brains.

“It’s interesting that the affected areas are so far from the neurodegeneration,” Kielar said. “One reason this might be happening is that those areas could be connected with white matter tracts,” which facilitate communication between different brain regions. “When one area is dead, the area connected to it doesn’t get normal input. It doesn’t know what to do, so it starts to lose its function and atrophy because it doesn’t get stimulation.”

###

This study was supported by the Ontario Brain Institute Ontario Neurodegenerative Disease Research Initiative, an Alzheimer’s Association New Investigator Research Grant (NIRG-12-236224) and a postdoctoral research award from the Ontario Research Coalition (ORC).

Media Contact
Mikayla Mace
[email protected]

Related Journal Article

http://dx.doi.org/10.1016/j.neuropsychologia.2019.04.007

Tags: AgingMedicine/Healthneurobiology
Share12Tweet8Share2ShareShareShare2

Related Posts

Blocking NNMT in Fibroblasts Reactivates T Cells

September 24, 2025

Obesity’s Effects on Bones: Molecules and Metabolism

September 24, 2025

Trends in Breast Cancer Screening for Older Women

September 24, 2025

Long-Term Durability of Valoctocogene Roxaparvovec in Hemophilia A

September 24, 2025
Please login to join discussion

POPULAR NEWS

  • Physicists Develop Visible Time Crystal for the First Time

    Physicists Develop Visible Time Crystal for the First Time

    69 shares
    Share 28 Tweet 17
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    50 shares
    Share 20 Tweet 13
  • Scientists Achieve Ambient-Temperature Light-Induced Heterolytic Hydrogen Dissociation

    49 shares
    Share 20 Tweet 12
  • Rapid Spread of Drug-Resistant Fungus Candidozyma auris in European Hospitals Prompts Urgent Warning from ECDC

    48 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

New Peer-Reviewed EWG Study Reveals Certain Produce Increases Pesticide Levels in Humans

Blocking NNMT in Fibroblasts Reactivates T Cells

Tunable Mid-IR Raman Solitons in Fluorotellurite Fiber

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.