• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Sunday, May 28, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Detecting coral biodiversity in seawater samples

Bioengineer by Bioengineer
March 29, 2023
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Researchers from the Okinawa Institute of Science and Technology (OIST) have developed a method to measure coral biodiversity through extracting the environmental DNA (or eDNA) from a liter of surface seawater collected from above a reef. The method has been confirmed to work through observations made by scientific divers in the same areas of ocean. The research, conducted in collaboration with the Okinawa Prefecture Environmental Science Center and University of Tokyo, was published in the Proceedings of the Royal Society B: Biological Sciences. This has paved the way for large-scale comprehensive surveys of reef-building coral to take place and removes the reliance of direct observations made through scientific scuba diving or snorkeling.

Scientists examines eDNA on a boat

Credit: OIST/Noriyuki Satoh

Researchers from the Okinawa Institute of Science and Technology (OIST) have developed a method to measure coral biodiversity through extracting the environmental DNA (or eDNA) from a liter of surface seawater collected from above a reef. The method has been confirmed to work through observations made by scientific divers in the same areas of ocean. The research, conducted in collaboration with the Okinawa Prefecture Environmental Science Center and University of Tokyo, was published in the Proceedings of the Royal Society B: Biological Sciences. This has paved the way for large-scale comprehensive surveys of reef-building coral to take place and removes the reliance of direct observations made through scientific scuba diving or snorkeling.

“Beautiful coral reefs in subtropical and tropical seas account for only 0.2% of the entire ocean,” said co-author Prof. Nori Satoh, Principal Investigator of OIST’s Marine Genomics Unit. “However, they are the most biodiverse areas of the oceans, home to about 30% of all marine life. Reef-building corals play a key role in creating coral reefs, but recent global warming and other factors have caused bleaching, and many coral reefs are in danger of disappearing.”

To conserve and protect the coral reefs, it’s important to first know which coral exists on the reef and how the make-up of a reef is changing over time. Previously, the only way to effectively survey a reef was through divers and snorkelers directly observing the coral and recording the species and the changes over time. This was time consuming, expensive, and labor intensive. But researchers are now utilizing the DNA that living creatures release into the environment, through skin, waste products, and mucus. By extracting this eDNA from the seawater and analyzing it, a clear picture of the organisms that inhabit that part of the ocean can be found, without ever having to enter the water.

Reef-building, or hard, coral are vital parts of coral reefs. It is estimated that there are approximately 1,300 species of reef-building corals in 236 genera worldwide. These corals release mucus into the surrounding seawater, which contains a portion of DNA. In 2021, researchers from OIST and the University of Tokyo succeeded in developing tools that amplify and identify the DNA of 45 genera of reef-building coral.

Now, the researchers have tested whether these tools are effective and accurate by conducting a large-scale survey of the ocean surrounding Okinawa using both the eDNA method and scientific divers. This involved direct visual observation by two divers to identify dominant coral genera and collecting two or three one-liter bottles of surface seawater at each site. Seawater was filtered as soon as possible to fix environmental DNA trapped in the filters and the filters were brought back to the OIST laboratory for analysis. Over a four-month period, from early September to late December 2021, 62 sites from around the main Okinawa Island were surveyed and two to four dominant coral genera at each reef were recorded.

“We found that the eDNA analysis matched that of the direct scientific observations with more than 91% accuracy,” said OIST Research Scientist, Dr. Koki Nishitsuji, first author of the paper. “In fact, 41 out of the 62 sites were identical. The eDNA method indicated the presence of five dominant coral genera at all 62 sites surveyed. What’s more the results of the environmental DNA method suggest the presence of corals never before recorded along the coast of Okinawa.”

The eDNA method requires complex sequencing information, and due to this, only 45 of the estimated 236 genera can currently be detected. With more information, the effectiveness of the eDNA method will increase. And, although further research is needed, the eDNA method may be able to indicate the presence of corals that are difficult to detect by direct observation.



Journal

Proceedings of the Royal Society B Biological Sciences

DOI

10.1098/rspb.2023.0026

Method of Research

Experimental study

Subject of Research

Not applicable

Article Title

An environmental DNA metabarcoding survey reveals generic-level occurrence of scleractinian corals at reef slopes of Okinawa Island

Article Publication Date

29-Mar-2023

Share12Tweet8Share2ShareShareShare2

Related Posts

Achala Vagal

Study finds distinct patterns of pre-existing brain health characteristics in stroke patients

May 27, 2023
Mothers and fathers left unprepared for parenthood by government health failures

New moms and dads left unprepared for parenthood by government health ‘failures’, report warns

May 27, 2023

Absolute vs. relative efficiency: How efficient are blue LEDs, actually?

May 26, 2023

Nanorobotic system presents new options for targeting fungal infections

May 26, 2023

POPULAR NEWS

  • the University of Haifa

    Groundbreaking study uncovers first evidence of long-term directionality in the origination of human mutation, fundamentally challenging Neo-Darwinism

    115 shares
    Share 46 Tweet 29
  • How life and geology worked together to forge Earth’s nutrient rich crust

    35 shares
    Share 14 Tweet 9
  • Element creation in the lab deepens understanding of surface explosions on neutron stars

    34 shares
    Share 14 Tweet 9
  • The case for engineering our food

    73 shares
    Share 29 Tweet 18

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Study finds distinct patterns of pre-existing brain health characteristics in stroke patients

New moms and dads left unprepared for parenthood by government health ‘failures’, report warns

Absolute vs. relative efficiency: How efficient are blue LEDs, actually?

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 50 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In