• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, November 1, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Designing roots to penetrate hard soils could help climate proof crops

Bioengineer by Bioengineer
July 18, 2022
in Chemistry
Reading Time: 2 mins read
0
Root image
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Scientists have discovered how to design cereal roots able to continue growing in hard soils by altering their ability to penetrate, enabling roots to access sources of water deeper in soil, and helping ‘climate-proof’ vital crops in response to changing UK rain fall patterns.

Root image

Credit: Dr Bipin Pandey, University of Nottingham

Scientists have discovered how to design cereal roots able to continue growing in hard soils by altering their ability to penetrate, enabling roots to access sources of water deeper in soil, and helping ‘climate-proof’ vital crops in response to changing UK rain fall patterns.

Climate change is altering rain fall patterns, resulting in drier, harder soils which threaten yields in rain fed crops like cereals.  An international team of researchers led by the University of Nottingham and Shanghai University have discovered key genes, hormone signals and processes in rice roots that control their ability to penetrate hard soils. Their findings have been published today in the scientific journal Proceedings of the National Academy of Sciences.

Hard soils cause crop roots to grow shorter and swell. Root swelling was originally thought to help penetrate hard soils. However, X-ray imaging of plants growing in soil at Nottingham revealed that roots which remained narrow penetrate hard soils more easily. The team went on to identify a hormone signal that promoted this root swelling response which, when its levels were reduced, helped roots remain narrow and penetrate hard soil more effectively.

Dr. Bipin Pandey, BBSRC Discovery Fellow and the lead researcher from the University of Nottingham says “Our research overturns decades of scientific thinking, revealing that root swelling does not help penetrate hard soils. These results can potentially safeguard or boost agricultural yields worldwide, particularly considering that climate change can exacerbate the strength of soil by less rainfall. This new understanding of how roots grow in hard soils promises to help develop novel soil-compaction-resistant crops.”

The international team includes researchers from the UK, USA, Netherlands, Germany, Czech Republic and China. The Nottingham team was funded by BBSRC Discovery Fellowship, European Research Council, Royal Society and University of Nottingham Future Food Beacon awards.



Journal

Proceedings of the National Academy of Sciences

DOI

10.1073/pnas.2201072119

Method of Research

Experimental study

Subject of Research

Not applicable

Article Title

Ethylene inhibits rice root growth in compacted soil via ABA and auxin mediated mechanisms

Article Publication Date

18-Jul-2022

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Breakthrough in Alkaloid Chemistry: First Asymmetric Syntheses of Seven Quebracho Indole Alkaloids Achieved in Just 7-10 Steps Using “Antenna Ligands”

October 31, 2025
blank

Dual-Function Electrocatalysis: A Comprehensive Overview

October 31, 2025

Cologne Researchers Unveil New Element in the “Nuclear Periodic Table”

October 31, 2025

Molecular-Level Breakthrough in Electrochromism Unveiled

October 31, 2025

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1294 shares
    Share 517 Tweet 323
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    312 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    203 shares
    Share 81 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    136 shares
    Share 54 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Dynapenic Abdominal Obesity Links to Cognitive Decline

New Shear Wave Insights for Healthy Pediatric Livers

Assessing Femoropopliteal Arteries: Health vs. Revascularization

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.