• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, September 14, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Designing roots to penetrate hard soils could help climate proof crops

Bioengineer by Bioengineer
July 18, 2022
in Chemistry
Reading Time: 2 mins read
0
Root image
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Scientists have discovered how to design cereal roots able to continue growing in hard soils by altering their ability to penetrate, enabling roots to access sources of water deeper in soil, and helping ‘climate-proof’ vital crops in response to changing UK rain fall patterns.

Root image

Credit: Dr Bipin Pandey, University of Nottingham

Scientists have discovered how to design cereal roots able to continue growing in hard soils by altering their ability to penetrate, enabling roots to access sources of water deeper in soil, and helping ‘climate-proof’ vital crops in response to changing UK rain fall patterns.

Climate change is altering rain fall patterns, resulting in drier, harder soils which threaten yields in rain fed crops like cereals.  An international team of researchers led by the University of Nottingham and Shanghai University have discovered key genes, hormone signals and processes in rice roots that control their ability to penetrate hard soils. Their findings have been published today in the scientific journal Proceedings of the National Academy of Sciences.

Hard soils cause crop roots to grow shorter and swell. Root swelling was originally thought to help penetrate hard soils. However, X-ray imaging of plants growing in soil at Nottingham revealed that roots which remained narrow penetrate hard soils more easily. The team went on to identify a hormone signal that promoted this root swelling response which, when its levels were reduced, helped roots remain narrow and penetrate hard soil more effectively.

Dr. Bipin Pandey, BBSRC Discovery Fellow and the lead researcher from the University of Nottingham says “Our research overturns decades of scientific thinking, revealing that root swelling does not help penetrate hard soils. These results can potentially safeguard or boost agricultural yields worldwide, particularly considering that climate change can exacerbate the strength of soil by less rainfall. This new understanding of how roots grow in hard soils promises to help develop novel soil-compaction-resistant crops.”

The international team includes researchers from the UK, USA, Netherlands, Germany, Czech Republic and China. The Nottingham team was funded by BBSRC Discovery Fellowship, European Research Council, Royal Society and University of Nottingham Future Food Beacon awards.



Journal

Proceedings of the National Academy of Sciences

DOI

10.1073/pnas.2201072119

Method of Research

Experimental study

Subject of Research

Not applicable

Article Title

Ethylene inhibits rice root growth in compacted soil via ABA and auxin mediated mechanisms

Article Publication Date

18-Jul-2022

Share12Tweet8Share2ShareShareShare2

Related Posts

Random-Event Clocks Offer New Window into the Universe’s Quantum Nature

Random-Event Clocks Offer New Window into the Universe’s Quantum Nature

September 11, 2025
Portable Light-Based Brain Monitor Demonstrates Potential for Advancing Dementia Diagnosis

Portable Light-Based Brain Monitor Demonstrates Potential for Advancing Dementia Diagnosis

September 11, 2025

Scientists reinvigorate pinhole camera technology for advanced next-generation infrared imaging

September 11, 2025

BeAble Capital Invests in UJI Spin-Off Molecular Sustainable Solutions to Advance Disinfection and Sterilization Technologies

September 11, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    153 shares
    Share 61 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    65 shares
    Share 26 Tweet 16
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Impact of Electrode Material on Radish Germination

Maize Fungal Diseases: Pathogen Diversity in Ethiopia

Unraveling Gut Microbiota’s Role in Breast Cancer

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.