• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, November 4, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Depositing Fe species inside ZSM-5 to oxidize cyclohexane to cyclohexanone

Bioengineer by Bioengineer
April 2, 2021
in Chemistry
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: ©Science China Press

The directly catalytic oxidation of alkanes has high atomic economy and application value to form corresponding chemical organic products such as alcohols, aldehydes, ketones and carboxylic acid. It is challenging to achieve efficient and selective oxidation of alkane under mild conditions due to the inert C-H bonds of alkanes.

Many researchers have developed a series of supported iron based catalysts to simulate the alkane biological monooxygenase with iron center atoms. However, traditional methods, such as impregnation method, ion exchange method, etc., are difficult to control the dispersion and the deposition position of iron species on the catalyst support.

Generally, iron species can easily replace the H+ of Brønsted acid sites to reduce the number of Brønsted acid sites, and many types of iron species will be formed on other different potential sites of ZSM-5 (Lewis acid sites and defect sites, etc.). The coexistence of multiple active centers on the catalyst is one of the main reasons for the low selectivity.

Atomic layer deposition (ALD) is an advanced thin film technology by single-layer chemisorption and reaction of vapor precursors on the surface of substrates with atomic and molecular control precision.

Recently, Dr. Bin Zhang and colleagues in the Institute of Coal Chemistry, Chinese Academy of Sciences, report a general strategy to selectively deposit high-dispersed Fe species into the micropores of ZSM-5 to prepare FeOx/ZSM-5 catalysts.

The obtained FeOx/ZSM-5 catalysts perform high selectivity of cyclohexanone (92%-97%), and the catalyst activity is significantly higher than those of the iron-based catalysts reported in the literature. Ferrocene (Fe(Cp)2) is used as a precursor for the deposition since its kinetic diameter is smaller than the pore size of ZSM-5. The framework of ZSM-5 and the Brønsted acid sites are intact during ALD, and the Fe species are selectively deposited onto the defect and Lewis acid sites of ZSM-5. The loading, size and surface electronic state of FeOx species can be precisely controlled by merely changing ALD cycles. The Fe content in the FeOx/ZSM-5 catalyst increases linearly with the increase of ALD cycles. Fe-O-Si bonds are dominantly formed over FeOx/ZSM-5 with a low loading of Fe, while FeOx nanoparticles are generated at a high Fe loading. Compared with the FeOx nanoparticles, the Fe-O-Si species performs higher turnover frequency and stability in the oxidation reaction.

###

See the article: Zhai LM, Zhang B*, Liang HJ, Wu HB, Yang XC, LuoG, Zhao SC, Qin Y. The selective deposition of Fe species inside ZSM-5 for the oxidation of cyclohexane to cyclohexanone. Sci. China Chem., 2021, DOI:10.1007/s11426-020-9968-x.

http://engine.scichina.com/doi/10.1007/s11426-020-9968-x.

Media Contact
Bin Zhang
[email protected]

Related Journal Article

http://dx.doi.org/10.1007/s11426-020-9968-x

Tags: Chemistry/Physics/Materials Sciences
Share12Tweet8Share2ShareShareShare2

Related Posts

Innovative Smart Hydrogel Emulates Skin Repair, Accelerating Healing of Diabetic Wounds

Innovative Smart Hydrogel Emulates Skin Repair, Accelerating Healing of Diabetic Wounds

November 4, 2025
Chemoenzymatic Synthesis of Lariat Lipopeptides Revolutionized

Chemoenzymatic Synthesis of Lariat Lipopeptides Revolutionized

November 4, 2025

PKU Scientists Reveal Climate Effects and Future Patterns of Hailstorms in China

November 4, 2025

IEEE Research Advances Avalanche Photodiode Design for Enhanced Ultraviolet Photodetection

November 4, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1298 shares
    Share 518 Tweet 324
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    313 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    205 shares
    Share 82 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    138 shares
    Share 55 Tweet 35

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Cabozantinib Alters Hormone Levels in Kidney Cancer Patients

Extranodal Extension’s Role in Oral Cancer Prognosis

Drivers of Chinese Students’ Acceptance of Traditional Medicine

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.