• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Wednesday, July 6, 2022
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

DeepSqueak tool identifies marine mammal calls #ASA182

Bioengineer by Bioengineer
May 23, 2022
in Biology
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

DENVER, May 23, 2022 – Lurking beneath the ocean’s surface, marine mammals use sound for navigation, prey detection, and a wide range of natural behaviors. Passive acoustic data from underwater environments can provide valuable information on these animals, such as their presence or absence within an area, their density and abundance, and their vocal response to anthropogenic noise sources.

DeepSqueak, a deep learning tool, can classify underwater acoustic signals

Credit: Ferguson

DENVER, May 23, 2022 – Lurking beneath the ocean’s surface, marine mammals use sound for navigation, prey detection, and a wide range of natural behaviors. Passive acoustic data from underwater environments can provide valuable information on these animals, such as their presence or absence within an area, their density and abundance, and their vocal response to anthropogenic noise sources.

As the size and number of acoustic datasets increase, accurately and quickly matching the bioacoustics signals to their corresponding sources becomes more challenging and important. This is especially difficult in noisy, natural acoustic environments.

Elizabeth Ferguson, from Ocean Science Analytics, will describe how DeepSqueak, a deep learning tool, can classify underwater acoustic signals at the 182nd Meeting of the Acoustical Society of America during her presentation, “Development of deep neural networks for marine mammal call detection using an open-source, user friendly tool.” The session will take place May 23 at 11:25 a.m. Eastern U.S. as part of the conference at the Sheraton Denver Downtown Hotel.

Spectrograms show how acoustic signals of different frequencies vary with time. They look like heat maps, with brighter regions indicating higher sound intensity at that frequency and time. DeepSqueak uses deep neural network image recognition and classification methods to determine the important features within spectrograms, then match those features to specific sources.

“Although we used DeepSqueak to detect underwater sounds, this user-friendly, open source tool would be useful for a variety of terrestrial species,” said Ferguson. “The capabilities of call detection extend to frequencies below the ultrasonic sounds it was originally intended for. Due to this and the capability of DeepSqueak to detect variable call types, development of neural networks is possible for many species of interest.”

DeepSqueak was originally developed to classify ultrasound signals from rodents, but its neural network framework allows the technique to adapt to detect sounds at other frequencies. Ferguson and her team used the method and data from hydrophones on the Ocean Observatories Initiative’s Coastal Endurance Array to detect humpback whales, delphinids, and fin whales, which have highly variable calls with a wide range of frequencies.

###

———————– MORE MEETING INFORMATION ———————–

USEFUL LINKS

Main meeting website: https://acousticalsociety.org/asa-meetings/  
Technical program: https://eventpilotadmin.com/web/planner.php?id=ASASPRING22  
Press Room: https://acoustics.org/world-wide-press-room/

WORLDWIDE PRESS ROOM

In the coming weeks, ASA’s Worldwide Press Room will be updated with additional tips on dozens of newsworthy stories and with lay language papers, which are 300 to 500 word summaries of presentations written by scientists for a general audience and accompanied by photos, audio and video. You can visit the site during the meeting at http://acoustics.org/world-wide-press-room/.

PRESS REGISTRATION

We will grant free registration to credentialed journalists and professional freelance journalists. If you are a reporter and would like to attend, contact AIP Media Services at [email protected]  For urgent requests, staff at [email protected] can also help with setting up interviews and obtaining images, sound clips, or background information.

ABOUT THE ACOUSTICAL SOCIETY OF AMERICA

The Acoustical Society of America (ASA) is the premier international scientific society in acoustics devoted to the science and technology of sound. Its 7,000 members worldwide represent a broad spectrum of the study of acoustics. ASA publications include The Journal of the Acoustical Society of America (the world’s leading journal on acoustics), JASA Express Letters, Proceedings of Meetings on Acoustics, Acoustics Today magazine, books, and standards.

###



Share12Tweet7Share2ShareShareShare1

Related Posts

Lab-grown “mini-kidneys” unlock secrets of a rare disease

Lab-grown “mini-kidneys” unlock secrets of a rare disease

July 6, 2022
How the epidermal growth factor (EGF) receptor changes its conformation when it binds to EGF.

How a shape-shifting receptor influences cell growth

July 6, 2022

COVID-19 virus spike protein flexibility improved by human cell’s own modifications

July 5, 2022

A rhythmic small intestinal microbiome prevents obesity and type 2 diabetes

July 5, 2022

POPULAR NEWS

  • blank

    Telescopic contact lenses

    40 shares
    Share 16 Tweet 10
  • Oregon State University research finds evidence to suggest Pacific whiting skin has anti-aging properties that prevent wrinkles

    38 shares
    Share 15 Tweet 10
  • Emerging Omicron subvariants BA.2.12.1, BA.4 and BA.5 are inhibited less efficiently by antibodies

    37 shares
    Share 15 Tweet 9
  • The pair of Orcas deterring Great White Sharks – by ripping open their torsos for livers

    37 shares
    Share 15 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

Zoology/Veterinary ScienceVirologyVaccineVirusUrogenital SystemWeather/StormsVaccinesVehiclesWeaponryViolence/CriminalsUrbanizationUniversity of Washington

Recent Posts

  • Hospital readmissions for asthma on the rise among children
  • Stem cells reveal underpinnings of rare immune disease
  • “Unlocking” sarcopenic obesity: A review in portal hypertension & cirrhosis provides clarity on key aspects of disease impact and treatment
  • Death by choking on food: A new review of coronial findings
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
Posting....