• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, January 16, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Deep-sea osmolyte makes biomolecular machines heat-tolerant

Bioengineer by Bioengineer
January 22, 2020
in Science News
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Munmun, T. et. al., Chemical Communications, Dec. 26, 2019

Researchers have discovered a method to control biomolecular machines over a wide temperature range using deep-sea osmolyte trimethylamine N-oxide (TMAO). This finding could open a new dimension in the application of artificial machines fabricated from biomolecular motors and other proteins.

Biomolecular motors are the smallest natural machines that keep living organisms dynamic. They can generate force and perform work on their own by consuming chemical energy. In recent years, reconstructed biomolecular motors have appeared as promising substitutes of synthetic motors and expected to be key components in biomimetic artificial micro- or nano-devices. However, reconstructed biomolecular motors lose their ability to function due to thermal instability in artificial environments.

Tasrina Munmun, Arif Md. Rashedul Kabir, Kazuki Sada and Akira Kakugo of Hokkaido University and Yukiteru Katsumoto of Fukuoka University were inspired by seeing how proteins remain stable in living organisms such as sharks, teleosts, skates, and crabs that survive in harsh environments like deep sea hydrothermal vents or under thermal perturbations. Although proteins are generally denatured by heat, the proteins in deep-sea animals remain stable and active with heat thanks to TMAO.

“Based on this fascinating defense mechanism in deep-sea animals, we attempted to control the activity of kinesin, a biomolecular motor associated with microtubule proteins, over a wide temperature range,” said Arif Md. Rashedul Kabir. To investigate the activity of kinesins, the team conducted in vitro motility assays in which kinesin motors propelled the microtubules on a two-dimensional substrate.

According to the study published in Chemical Communications, they discovered that TMAO suppresses thermal denaturation of kinesins in a concentration dependent manner. Within a temperature range of 22-46 °C, kinesins propelled microtubules for a prolonged time (almost 2.5 times longer) when TMAO was present. This shows the team successfully controlled the dynamics between kinesins and microtubules over a broad temperature range. “This study is the first example showing successful utilization of a deep-sea osmolyte in maintaining biomolecular motors for a prolonged time over a wide temperature range in engineered environments,” Arif Md. Rashedul Kabir commented.

Arif Md. Rashedul Kabir continued, “The idea of utilizing natural defense mechanisms against heat-induced inactivation of proteins and enzymes will now be encouraged further.”

“Our work will open a new dimension in sustainable applications of reconstructed biomolecules which will benefit various fields including biomimetic engineering, biochemical and biomedical engineering as well as materials science,” Akira Kakugo added.

###

Media Contact
Naoki Namba
[email protected]
81-117-062-185

Original Source

https://www.global.hokudai.ac.jp/blog/deep-sea-osmolyte-makes-biomolecular-machines-heat-tolerant/

Related Journal Article

http://dx.doi.org/10.1039/C9CC09324A

Tags: BiochemistryBiomechanics/BiophysicsBiomedical/Environmental/Chemical EngineeringBiotechnologyChemistry/Physics/Materials SciencesNanotechnology/Micromachines
Share12Tweet8Share2ShareShareShare2

Related Posts

AI and Machine Learning Transform Baldness Detection and Management

January 16, 2026
blank

Assessing Invasion Risk of Red-Eared Sliders in Kerala

January 16, 2026

Global Risk Pooling Shields Hydropower from Drought

January 16, 2026

Antioxidant Effects of Decolorized Rosemary in Pork

January 16, 2026
Please login to join discussion

POPULAR NEWS

  • Enhancing Spiritual Care Education in Nursing Programs

    155 shares
    Share 62 Tweet 39
  • PTSD, Depression, Anxiety in Childhood Cancer Survivors, Parents

    147 shares
    Share 59 Tweet 37
  • Robotic Ureteral Reconstruction: A Novel Approach

    77 shares
    Share 31 Tweet 19
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    54 shares
    Share 22 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

AI and Machine Learning Transform Baldness Detection and Management

Assessing Invasion Risk of Red-Eared Sliders in Kerala

Global Risk Pooling Shields Hydropower from Drought

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 71 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.