• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, September 12, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Data science helps engineers discover new materials for solar cells and LEDs

Bioengineer by Bioengineer
May 22, 2019
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Yang lab/Energy & Environmental Science

Engineers at the University of California San Diego have developed a high-throughput computational method to design new materials for next generation solar cells and LEDs. Their approach generated 13 new material candidates for solar cells and 23 new candidates for LEDs. Calculations predicted that these materials, called hybrid halide semiconductors, would be stable and exhibit excellent optoelectronic properties.

The team published their findings on May 22, 2019 in the journal Energy & Environmental Science.

Hybrid halide semiconductors are materials that consist of an inorganic framework housing organic cations. They show unique material properties that are not found in organic or inorganic materials alone.

A subclass of these materials, called hybrid halide perovskites, have attracted a lot of attention as promising materials for next generation solar cells and LED devices because of their exceptional optoelectronic properties and inexpensive fabrication costs. However, hybrid perovskites are not very stable and contain lead, making them unsuitable for commercial devices.

Seeking alternatives to perovskites, a team of researchers led by Kesong Yang, a nanoengineering professor at the UC San Diego Jacobs School of Engineering, used computational tools, data mining and data screening techniques to discover new hybrid halide materials beyond perovskites that are stable and lead-free. “We are looking past perovskite structures to find a new space to design hybrid semiconductor materials for optoelectronics.” Yang said.

Yang’s team started by going through the two largest quantum materials databases, AFLOW and The Materials Project, and analyzing all compounds that were similar in chemical composition to lead halide perovskites. Then they extracted 24 prototype structures to use as templates for generating hybrid organic-inorganic materials structures.

Next, they performed high-throughput quantum mechanics calculations on the prototype structures to build a comprehensive quantum materials repository containing 4,507 hypothetical hybrid halide compounds. Using efficient data mining and data screening algorithms, Yang’s team rapidly identified 13 candidates for solar cell materials and 23 candidates for LEDs out of all the hypothetical compounds.

“A high-throughput study of organic-inorganic hybrid materials is not trivial,” Yang said. It took several years to develop a complete software framework equipped with data generation, data mining and data screening algorithms for hybrid halide materials. It also took his team a great deal of effort to make the software framework work seamlessly with the software they used for high-throughput calculations.

“Compared to other computational design approaches, we have explored a significantly large structural and chemical space to identify novel halide semiconductor materials,” said Yuheng Li, a nanoengineering PhD candidate in Yang’s group and the first author of the study. This work could also inspire a new wave of experimental efforts to validate computationally predicted materials, Li said.

Moving forward, Yang and his team are using their high-throughput approach to discover new solar cell and LED materials from other types of crystal structures. They are also developing new data mining modules to discover other types of functional materials for energy conversion, optoelectronic and spintronic applications.

Behind the scenes: SDSC’s ‘Comet’ supercomputer powers the research

Yang attributes much of his project’s success to the utilization of the Comet supercomputer at UC San Diego’s San Diego Supercomputer Center (SDSC). “Our large-scale quantum mechanics calculations required a large number of computational resources,” he explained. “Since 2016, we have been awarded with computing time–some 3.46 million core-hours on Comet, which made the project possible.”

While Comet powered the simulations in this study, Yang said that SDSC staff also played a crucial role in his research. Ron Hawkins, SDSC’s director of industry relations, and Jerry Greenberg, a computational research specialist with the Center, ensured that adequate support was provided to Yang and his team. The researchers especially relied on the SDSC staff for the study’s compilation and installation of computational codes on Comet, which is funded by the National Science Foundation.

Yang, who was connected with SDSC via the Center’s Triton Shared Computing Cluster (TSCC) campus cluster at UC San Diego, said that Comet not only saved them time. “The value of these awarded computing resources is about $115,600, which also saved our project a great deal of money.”

###

Paper title: “High-throughput computational design of organic-inorganic hybrid halide semiconductors beyond perovskites for optoelectronics.”

This work was supported by the Global Research Outreach (GRO) Program of Samsung Advanced Institute of Technology (award number 20164974) and the National Science Foundation (ACI-1550404). The ab-initio molecular dynamics calculations used computational resources supplied by the Department of Defense High Performance Computing Modernization Program (HPCMP).

Media Contact
Liezel Labios
[email protected]

Original Source

http://jacobsschool.ucsd.edu/news/news_releases/release.sfe?id=2793

Related Journal Article

http://dx.doi.org/10.1039/C9EE01371G

Tags: Chemistry/Physics/Materials SciencesMaterialsNanotechnology/MicromachinesSuperconductors/SemiconductorsTechnology/Engineering/Computer Science
Share13Tweet7Share2ShareShareShare1

Related Posts

Random-Event Clocks Offer New Window into the Universe’s Quantum Nature

Random-Event Clocks Offer New Window into the Universe’s Quantum Nature

September 11, 2025
Portable Light-Based Brain Monitor Demonstrates Potential for Advancing Dementia Diagnosis

Portable Light-Based Brain Monitor Demonstrates Potential for Advancing Dementia Diagnosis

September 11, 2025

Scientists reinvigorate pinhole camera technology for advanced next-generation infrared imaging

September 11, 2025

BeAble Capital Invests in UJI Spin-Off Molecular Sustainable Solutions to Advance Disinfection and Sterilization Technologies

September 11, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    152 shares
    Share 61 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    64 shares
    Share 26 Tweet 16
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Gal-9 on Leukemia Stem Cells Predicts Prognosis

Auranofin’s Anti-Leishmanial Effects: Lab and Animal Studies

Nanomedicine: A New Frontier in Targeting Metastasis

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.