• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, September 20, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Cutting-edge cameras reveal the secret life of dolphins

Bioengineer by Bioengineer
February 21, 2017
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
Loading video…

Credit: The University of Sydney

A world-first study testing new underwater cameras on wild dolphins has given researchers the best view yet into their hidden marine world.

A research team including experts from the University of Sydney's Charles Perkins Centre and the University of Alaska Southeast trialled the custom-made non-invasive cameras to capture and analyse more than 535 minutes of such rarely-seen activities as mother-calf interaction, playing with kelp, and intimate social behaviours like flipper-rubbing. The results are published in the latest Marine Biology.

"For the first time, these cameras have given us the opportunity to see what dolphins do on their own terms," said Dr Gabriel Machovsky-Capuska from the University of Sydney's School of Veterinary Science and Charles Perkins Centre.

"There were no wildlife crews, no invasive underwater housings – and the dolphins remained largely unaffected by our cameras. This research opens up a whole new approach for capturing wild animal behaviour, which will ultimately help us to not only advance conservation efforts but also come closer to understanding wild predators' and human nutrition too."

The successful deployment advances new approaches to filming wild sea creatures, aiding conservation and rehabilitation efforts and giving researchers unprecedented insight into wild dolphins' prey and habitats.

"Dolphins are marine top predators that are considered biomonitors of marine environments, so gaining a better understanding of their lives will help us to better comprehend the health of marine environments including prey species like fish and squid that are highly consumed by humans," said Dr Machovsky-Capuska, who is also co-leader of the Human-Animal Interactions research node at the Charles Perkin Centre.

The cameras were attached via suction cups to eight wild dusky dolphins, deployed using a long pole with the aid of Velcro pads. The footage was captured off the coast of New Zealand from December 2015 to January 2016, with each camera system loaded with memory boards, very high frequency and satellite transmitters, time depth recorders and having a battery life of six hours.

"One challenge of doing this research on small and fast animals like dusky dolphins is that there is limited surface area on the dolphin's body for tag attachment, so there's only a small window of time to actually deploy the tag as the dolphin swims past," said Dr Peter Jones from the University of Sydney's School of Electrical and Information Engineering.

"We have much to learn about animal behaviour and systems such as this are a great way to observe their activity in a natural environment with the least likely influence on that behaviour."

Dolphin specialist Heidi Pearson, Assistant Professor of Marine Biology at the University of Alaska Southeast, said the research has great potential for protecting endangered species by giving scientists a much higher resolution of information than is possible than with other methods.

"From the surface, researchers can only see about 10 percent of what is going on in an animal's life. With these video cameras, we can 'see' from the animals' perspective and begin to understand the challenges they face as they move throughout their habitat," she said.

"For example, in marine areas subjected to high degrees of human disturbance such as shipping or coastal development, the ability to collect data from the animal's perspective will be critical in understanding how and to what extent these stressors affect an animal's ability to feed, mate, and raise young."

The researchers now hope to further develop the cameras to test with marine predators including other cetacean species and sharks.

###

The research was funded by the National Geographic Society Waitt Grant Fund and the Encounter Foundation (Kaikoura, New Zealand) and included the New Zealand Department of Conservation, Massey University (New Zealand) and the National Oceanic and Atmospheric Administration (US) as project partners.

Media Contact

Emily Cook
[email protected]
61-427-309-579
@SydneyUni_Media

http://www.usyd.edu.au/

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

CT Scans in Kids: Cancer Risk Insights

September 20, 2025

Revealing Tendon Changes from Rotator Cuff Tears

September 20, 2025

Caffeine Exposure Shapes Neurodevelopment in Premature Infants

September 20, 2025

Impact of Defect Size and Location on Spinal Fractures

September 20, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    156 shares
    Share 62 Tweet 39
  • Physicists Develop Visible Time Crystal for the First Time

    68 shares
    Share 27 Tweet 17
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    49 shares
    Share 20 Tweet 12
  • Scientists Achieve Ambient-Temperature Light-Induced Heterolytic Hydrogen Dissociation

    48 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

CT Scans in Kids: Cancer Risk Insights

Revealing Tendon Changes from Rotator Cuff Tears

Caffeine Exposure Shapes Neurodevelopment in Premature Infants

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.