• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, October 26, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Cucurbit downy mildew pathogen has two genetically distinct host-adapted clades

Bioengineer by Bioengineer
October 27, 2020
in Biology
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: E. C. Wallace, K. N. D’Arcangelo, and L. M. Quesada-Ocampo

Cucurbit downy mildew is a devastating disease for the United States cucurbit industry, which includes cucumbers, watermelon, squash, and pumpkin. The disease has caused major losses in North Carolina, which has significant cucumber and watermelon acreage. To help growers better manage this disease, a group of plant pathologists at North Carolina State University sought to better understand the biology of the pathogen that causes downy mildew.

They determined that the causal pathogen, Pseudoperonospora cubensis, has two genetically distinct host-adapted clades and also found that wild cucurbits can serve as reservoirs for this pathogen. Clade 1 isolates more frequently infect squash, pumpkin, and watermelon while clade 2 impacted cucumber and cantaloupe. They also found that evidence of recombination in clade 1 isolates but not clade 2 isolates.

“Overall, our findings have important implications for disease management because clade-specific factors such as host susceptibility and inoculum availability of each clade by region may influence pathogen outbreaks in different commercial cucurbits, timing of fungicide applications, and phenotyping for host resistance breeding efforts,” explained lead author Emma Wallace.

“It was surprising to us to find two host-adapted clades with such distinct genetic differentiation and only one clade showing evidence of recombination. We were also surprised that wild cucurbits can become readily infected by one or both clades, especially since some of those wild cucurbits are widespread in the United States and some are perennial,” added co-author Kimberly D’Arcangelo.

While previous research had shown evidence of two subpopulations within the pathogen, none were able to identify the main factors underlying those populations due to sampling limitations. Using a population genetics approach, Wallace and her colleagues applied a robust and standardized sampling strategy to investigate P. cubensis populations that infect wild cucurbit hosts.

“Our findings will have significant impacts on the adoption of crop-specific management practices,” said corresponding author Lina Quesada. “Current disease management recommendations are provided under the assumption that P. cubensis isolates were somewhat uniform. However, this paper and related projects have revealed that the two clades can have important biological differences, such as host preference, that are relevant when thinking about how to manage disease.”

Moving forward, plant pathologists will have to provide crop-specific recommendations as opposed to using the same approach for all cucurbit crops infected with downy mildew. For more information, read “Population Analyses Reveal Two Host-Adapted Clades of Pseudoperonospora cubensis, the Causal Agent of Cucurbit Downy Mildew, on Commercial and Wild Cucurbits” published in the September issue of Phytopathology.

###

Media Contact
Ashley Bergman Carlin
[email protected]

Related Journal Article

http://dx.doi.org/10.1094/PHYTO-01-20-0009-R

Tags: Agricultural Production/EconomicsAgricultureBiologyFood/Food ScienceMycologyPlant SciencesPopulation Biology
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Goat Genome Study Uncovers Genes for Adaptation

October 26, 2025
blank

Exploring TIFY Family Genes in Panax Notoginseng

October 26, 2025

Genetic Diversity and Cytotype Insights in Platostoma

October 26, 2025

Exploring Archaeal Promoters with Explainable CNN Models

October 26, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1284 shares
    Share 513 Tweet 321
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    310 shares
    Share 124 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    196 shares
    Share 78 Tweet 49
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    134 shares
    Share 54 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Learning by Teaching Boosts Nursing Skills and Knowledge

Analyzing Respiratory Mask Fit with Simulations and Tests

Study Assesses Non-Invasive Support in Preterm Intubation

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.