• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, September 9, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Cucurbit downy mildew pathogen has two genetically distinct host-adapted clades

Bioengineer by Bioengineer
October 27, 2020
in Biology
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: E. C. Wallace, K. N. D’Arcangelo, and L. M. Quesada-Ocampo

Cucurbit downy mildew is a devastating disease for the United States cucurbit industry, which includes cucumbers, watermelon, squash, and pumpkin. The disease has caused major losses in North Carolina, which has significant cucumber and watermelon acreage. To help growers better manage this disease, a group of plant pathologists at North Carolina State University sought to better understand the biology of the pathogen that causes downy mildew.

They determined that the causal pathogen, Pseudoperonospora cubensis, has two genetically distinct host-adapted clades and also found that wild cucurbits can serve as reservoirs for this pathogen. Clade 1 isolates more frequently infect squash, pumpkin, and watermelon while clade 2 impacted cucumber and cantaloupe. They also found that evidence of recombination in clade 1 isolates but not clade 2 isolates.

“Overall, our findings have important implications for disease management because clade-specific factors such as host susceptibility and inoculum availability of each clade by region may influence pathogen outbreaks in different commercial cucurbits, timing of fungicide applications, and phenotyping for host resistance breeding efforts,” explained lead author Emma Wallace.

“It was surprising to us to find two host-adapted clades with such distinct genetic differentiation and only one clade showing evidence of recombination. We were also surprised that wild cucurbits can become readily infected by one or both clades, especially since some of those wild cucurbits are widespread in the United States and some are perennial,” added co-author Kimberly D’Arcangelo.

While previous research had shown evidence of two subpopulations within the pathogen, none were able to identify the main factors underlying those populations due to sampling limitations. Using a population genetics approach, Wallace and her colleagues applied a robust and standardized sampling strategy to investigate P. cubensis populations that infect wild cucurbit hosts.

“Our findings will have significant impacts on the adoption of crop-specific management practices,” said corresponding author Lina Quesada. “Current disease management recommendations are provided under the assumption that P. cubensis isolates were somewhat uniform. However, this paper and related projects have revealed that the two clades can have important biological differences, such as host preference, that are relevant when thinking about how to manage disease.”

Moving forward, plant pathologists will have to provide crop-specific recommendations as opposed to using the same approach for all cucurbit crops infected with downy mildew. For more information, read “Population Analyses Reveal Two Host-Adapted Clades of Pseudoperonospora cubensis, the Causal Agent of Cucurbit Downy Mildew, on Commercial and Wild Cucurbits” published in the September issue of Phytopathology.

###

Media Contact
Ashley Bergman Carlin
[email protected]

Related Journal Article

http://dx.doi.org/10.1094/PHYTO-01-20-0009-R

Tags: Agricultural Production/EconomicsAgricultureBiologyFood/Food ScienceMycologyPlant SciencesPopulation Biology
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Taenia Pisiformis Infection Alters Pregnant Rabbits’ Immune Response

September 9, 2025
blank

Tracing the Origins of Wnt Signaling Uncovers a Protein Superfamily Spanning the Tree of Life

September 9, 2025

From Quantum Mechanics to Quantum Microbes: A Yale Scientist’s Revolutionary Journey of Discovery

September 9, 2025

Scientists Harness Breakthrough Tool to Advance Canine Cancer Treatment

September 9, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    151 shares
    Share 60 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • First Confirmed Human Mpox Clade Ib Case China

    56 shares
    Share 22 Tweet 14
  • Physicists Develop Visible Time Crystal for the First Time

    50 shares
    Share 20 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Thirteen U.S. Journalists Awarded Fellowships for Aging-Focused Science Reporting

Innovative Methods for Generating Methanol Using Electricity and Biomass

Gestational Hypoxia Boosts Neonatal Guinea Pig Brain Permeability

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.