• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, October 11, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

CU cancer researcher wins two awards to study drug-resistant cancer cells

Bioengineer by Bioengineer
March 19, 2021
in Health
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

University of Colorado Boulder researcher Sabrina L. Spencer, PhD., recently won the Damon Runyon-Rachleff Innovation Award (from the Damon Runyon Cancer Research Foundation) and the Emerging Leader Award (from The Mark Foundation for Cancer Research)

IMAGE

Credit: Sabrina Spencer

Sabrina L. Spencer, PhD, is a CU Boulder researcher and a CU Cancer Center member. Spencer recently won two awards: the Damon Runyon-Rachleff Innovation Award (from the Damon Runyon Cancer Research Foundation) and the Emerging Leader Award (from The Mark Foundation for Cancer Research). The preliminary research she used to apply for the grants, “Melanoma subpopulations that rapidly escape MAPK pathway inhibition incur DNA damage and rely on stress signalling,” was published in Nature Communications on March 19, 2021. We spoke to Spencer about the awards and how she plans to use them to further her research.

Q: What is the focus of your research?

The work is about understanding where drug resistance comes from in cancer. It’s a well-known problem, and it’s particularly prominent with targeted therapeutics. These drugs usually work great at first, but then, after some time, there’s relapse.

A lot of people have focused on trying to understand what mutations in those relapsed tumors make the drugs stop working. But in a way, that’s a little too late. Because the question is, how did those cells survive in the first place to be able to acquire the mutations to become drug resistant? We wanted to look at the first few days of drug treatment to understand whether you can already see cells adapting in a non-genetic way in order to evade the drugs.

Q: You’re watching cells become drug resistant in real time? How does that work?

We use time-lapse microscopy to study this process. We’re particularly adept at time-lapse imaging of single cells, where we film single cancer cells over several days and watch them proliferating. Then we hit them with the drugs and watch the drugs block the cells from proliferating. Then, after a couple of days, we can see a subset of cells start proliferating again.

Q: What sparked your interest in this research?

I’ve always been interested in outliers. And I’ve always been interested in cancer cells, because they have such an interesting mixture of adaptive and maladaptive features — features that make them proliferate faster but are an Achilles heel as well. I like the philosophical juxtaposition of combining that with this idea of outliers and heterogeneity. Every cell is unique. Even genetically identical cells aren’t truly identical, because they could have a little more of protein X and a little less of protein Y at any given moment. When it comes to drug resistance, these chance events can make a cell an outlier on one particular day, and that could be the day the drug comes along. Now that cell has a completely different fate.

Q: You just won two awards to further this research. What was that like?

I submitted a very similar grant application to both, because each funding agency only gives out a handful of these awards. I didn’t think this would be a problem, because I wasn’t expecting to get either one! Then I found out that I had gotten both and thought I’d have to choose between them, but when I reported my situation to the two foundations, they said, “Don’t you worry about it. We’ll sort it out.” And they decided to co-fund the grant.

Q: How will you use the grant?

One of the things we saw about the cells that escaped the drugs — cells we have dubbed escapees — is that they have DNA damage. That’s curious, because these drugs are not supposed to be mutagenic. So the first aim of the grant is to understand how these drugs are causing DNA damage. The second finding is the activation of a stress response pathway called ATF4. That pathway is super high in the escapees, but not the non-escapees and not the untreated cells. We know that if you knock that pathway down, you get fewer escapees, but we don’t really understand what that pathway is doing for the escapees. Is it helping them escape the drugs? Or is it just helping them survive the stress of cycling in the presence of the drugs? So that’s the second aim of the grant, to understand how this ATF4 stress response pathway is enabling or promoting drug escape.

###

Media Contact
Valerie Gleaton
[email protected]

Related Journal Article

http://dx.doi.org/10.1038/s41467-021-21549-x

Tags: BiologyBiomedical/Environmental/Chemical EngineeringcancerCell BiologyGenesGeneticsMedicine/HealthMicrobiology
Share12Tweet8Share2ShareShareShare2

Related Posts

Revolutionizing Heart Health: Targeting Autonomic Nervous System

October 11, 2025

Unveiling Mental Health Challenges in Autistic Girls

October 11, 2025

Link Between Nurse Practices and CAUTI Rates

October 11, 2025

Plasma Exosome Proteomics in Metastatic Colorectal Cancer

October 11, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1214 shares
    Share 485 Tweet 303
  • New Study Reveals the Science Behind Exercise and Weight Loss

    102 shares
    Share 41 Tweet 26
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    99 shares
    Share 40 Tweet 25
  • Revolutionizing Optimization: Deep Learning for Complex Systems

    88 shares
    Share 35 Tweet 22

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Revolutionizing Heart Health: Targeting Autonomic Nervous System

Unveiling Mental Health Challenges in Autistic Girls

Soft Exosuit Enhances Shoulder and Elbow Function Post-Injury

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 63 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.