• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Friday, July 1, 2022
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

CRISPR now possible in cockroaches

Bioengineer by Bioengineer
May 16, 2022
in Health
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Researchers have developed a CRISPR-Cas9 approach to enable gene editing in cockroaches, according to a study published by Cell Press on May 16th in the journal Cell Reports Methods. The simple and efficient technique, named “direct parental” CRISPR (DIPA-CRISPR), involves the injection of materials into female adults where eggs are developing rather than into the embryos themselves.

Cartoon of CRISPR in cockroaches

Credit: Shirai et al./Cell Reports Methods

Researchers have developed a CRISPR-Cas9 approach to enable gene editing in cockroaches, according to a study published by Cell Press on May 16th in the journal Cell Reports Methods. The simple and efficient technique, named “direct parental” CRISPR (DIPA-CRISPR), involves the injection of materials into female adults where eggs are developing rather than into the embryos themselves.

“In a sense, insect researchers have been freed from the annoyance of egg injections,” says senior study author Takaaki Daimon of Kyoto University. “We can now edit insect genomes more freely and at will. In principle, this method should work for more than 90% of insect species.”

Current approaches for insect gene editing typically require microinjection of materials into early embryos, severely limiting its application to many species. For example, past studies have not achieved genetic manipulation of cockroaches due to their unique reproductive system. In addition, insect gene editing often requires expensive equipment, a specific experimental setup for each species, and highly skilled laboratory personnel. “These problems with conventional methods have plagued researchers who wish to perform genome editing on a wide variety of insect species,” Daimon says.

To overcome these limitations, Daimon and his collaborators injected Cas9 ribonucleoproteins (RNPs) into the main body cavity of adult female cockroaches to introduce heritable mutations in developing egg cells. The results demonstrated that gene editing efficiency—the proportion of edited individuals out of the total number of individuals hatched—could reach as high as 22%. In the red flour beetle, DIPA-CRISPR achieved an efficiency of more than 50%. Moreover, the researchers generated gene knockin beetles by co-injecting single-stranded oligonucleotides and Cas9 RNPs, but the efficiency is low and should be further improved.

The successful application of DIPA-CRISPR in two evolutionarily distant species demonstrates its potential for broad use. But the approach is not directly applicable to all insect species, including fruit flies. In addition, the experiments showed that the most critical parameter for success is the stage of the adult females injected. As a result, DIPA-CRISPR requires good knowledge of ovary development. This can be challenging in some species, given the diverse life histories and reproductive strategies in insects.

Despite these limitations, DIPA-CRISPR is accessible, highly practical, and could be readily implemented in laboratories, extending the application of gene editing to a wide diversity of model and non-model insect species. The technique requires minimal equipment for adult injection, and only two components—Cas9 protein and single-guide RNA—greatly simplifying procedures for gene editing. Moreover, commercially available, standard Cas9 can be used for adult injection, eliminating the need for time-consuming custom engineering of the protein.

“By improving the DIPA-CRISPR method and making it even more efficient and versatile, we may be able to enable genome editing in almost all of the more than 1.5 million species of insects, opening up a future in which we can fully utilize the amazing biological functions of insects,” Daimon says. “In principle, it may be also possible that other arthropods could be genome edited using a similar approach. These include agricultural and medical pests such as mites and ticks, and important fishery resources such as shrimp and crabs.” 

###

This work was supported by funding from JSPS KAKENHI, JSPS Open Partnership Joint Research Projects, Spanish Ministry of Innovation and Competitiveness, and CSIC-Spain, and in part by Cabinet Office, Government of Japan, Cross-ministerial Moonshot Agriculture, Forestry and Fisheries Research and Development Program.

Cell Reports Methods, Shirai et al. “DIPA-CRISPR is a simple and accessible method for insect gene editing” https://www.cell.com/cell-reports-methods/fulltext/S2667-2375(22)00078-9



Journal

Cell Reports Methods

DOI

10.1016/j.crmeth.2022.100215

Method of Research

Experimental study

Subject of Research

Animals

Article Title

DIPA-CRISPR is a simple and accessible method for insect gene editing

Article Publication Date

16-May-2022

Share12Tweet8Share2ShareShareShare2

Related Posts

Aimin Liu, chemistry professor at The University of Texas at San Antonio

Prestigious NSF funding will enable UTSA professor to further demystify body’s metabolic processes

July 1, 2022
Megan Conrow-Graham's research reveals a mechanism that may be involved in ASD with intellectual disability

When ASD occurs with intellectual disability, a convergent mechanism for two top-ranking risk genes may be the cause

July 1, 2022

TTUHSC School of Nursing’s Ashcraft named Fellow for the Gerontological Society of America

July 1, 2022

New antibody detection method for coronavirus that does not require a blood sample

July 1, 2022

POPULAR NEWS

  • Pacific whiting

    Oregon State University research finds evidence to suggest Pacific whiting skin has anti-aging properties that prevent wrinkles

    37 shares
    Share 15 Tweet 9
  • The pair of Orcas deterring Great White Sharks – by ripping open their torsos for livers

    35 shares
    Share 14 Tweet 9
  • University of Miami Rosenstiel School selected for National ‘Reefense’ Initiative focusing on Florida and the Caribbean

    35 shares
    Share 14 Tweet 9
  • Sharks may be closer to the city than you think, new study finds

    34 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

Violence/CriminalsVaccinesUrogenital SystemWeather/StormsVirologyVirusVaccineUniversity of WashingtonWeaponryZoology/Veterinary ScienceVehiclesUrbanization

Recent Posts

  • HKUST develops world’s most durable hydrogen fuel cell
  • Prestigious NSF funding will enable UTSA professor to further demystify body’s metabolic processes
  • When ASD occurs with intellectual disability, a convergent mechanism for two top-ranking risk genes may be the cause
  • Photon-controlled diode: an optoelectronic device with a new signal processing behavior
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
Posting....