• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, August 21, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Could this rare supernova resolve a longstanding origin debate?

Bioengineer by Bioengineer
May 8, 2019
in Chemistry
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Although hydrogen is the most-abundant element in the universe, it is almost never seen in Type Ia supernova explosions, except this one

IMAGE

Credit: Courtesy of Anthony Piro, Carnegie Institution for Science

Pasadena, CA–Detection of a supernova with an unusual chemical signature by a team of astronomers led by Carnegie’s Juna Kollmeier–and including Carnegie’s Nidia Morrell, Anthony Piro, Mark Phillips, and Josh Simon–may hold the key to solving the longstanding mystery that is the source of these violent explosions. Observations taken by the Magellan telescopes at Carnegie’s Las Campanas Observatory in Chile were crucial to detecting the emission of hydrogen that makes this supernova, called ASASSN-18tb, so distinctive.

Their work is published in Monthly Notices of the Royal Astronomical Society.

Type Ia supernovae play a crucial role in helping astronomers understand the universe. Their brilliance allows them to be seen across great distances and to be used as cosmic mile-markers, which garnered the 2011 Nobel Prize in Physics. Furthermore, their violent explosions synthesize many of the elements that make up the world around us, which are ejected into the galaxy to generate future stars and stellar systems.

Although hydrogen is the most-abundant element in the universe, it is almost never seen in Type Ia supernova explosions. In fact, the lack of hydrogen is one of the defining features of this category of supernovae and is thought to be a key clue to understanding what came before their explosions. This is why seeing hydrogen emissions coming from this supernova was so surprising.

Type Ia supernovae originate from the thermonuclear explosion of a white dwarf that is part of a binary system. But what exactly triggers the explosion of the white dwarf–the dead core left after a Sun-like star exhausts its nuclear fuel–is a great puzzle. A prevailing idea is that, the white dwarf gains matter from its companion star, a process that may eventually trigger the explosion, but whether this is the correct theory has been hotly debated for decades.

This led the research team behind this paper to begin a major survey of Type Ia supernovae–called 100IAS–that was launched when Kollmeier was discussing the origin of these supernovae with study co-authors Subo Dong of Peking University and Doron Kushnir of the Weizmann Institute of Science who, along with Weizmann colleague Boaz Katz, put forward an new theory for Type Ia explosions that involves the violent collision of two white dwarfs.

Astronomers eagerly study the chemical signatures of the material ejected during these explosions in order to understand the mechanism and players involved in creating Type Ia supernovae.

In recent years, astronomers have discovered a small number of rare Type Ia supernovae that are cloaked in large amount of hydrogen–maybe as much as the mass of our Sun. But in several respects, ASASSN-18tb is different from these previous events.

“It’s possible that the hydrogen we see when studying ASASSN-18tb is like these previous supernovae, but there are some striking differences that aren’t so easy to explain,” said Kollmeier.

First, in all previous cases these hydrogen-cloaked Type Ia supernovae were found in young, star-forming galaxies where plenty of hydrogen-rich gas may be present. But ASASSN-18tb occurred in a galaxy consisting of old stars. Second, the amount of hydrogen ejected by ASASSN-18tb is significantly less than that seen surrounding those other Type Ia supernovae. It probably amounts to about one-hundredth the mass of our Sun.

“One exciting possibility is that we are seeing material being stripped from the exploding white dwarf’s companion star as the supernova collides with it,” said Anthony Piro. “If this is the case, it would be the first-ever observation of such an occurrence.”

“I have been looking for this signature for a decade!” said co-author Josh Simon. “We finally found it, but it’s so rare, which is an important piece of the puzzle for solving the mystery of how Type Ia supernovae originate.”

Nidia Morrell was observing that night, and she immediately reduced the data coming off the telescope and circulated them to the team including Ph.D. student Ping Chen, who works on 100IAS for his thesis and Jose Luis Prieto of Universidad Diego Portales, a veteran supernova observer. Chen was the first to notice that this was not a typical spectrum. All were completely surprised by what they saw in ASASSN-18tb’s spectrum.

“I was shocked, and I thought to myself ‘could this really be hydrogen?'” recalled Morrell.

To discuss the observation, Morrell met with team member Mark Phillips, a pioneer in establishing the relationship–informally named after him–that allows Type Ia supernovae to be used as standard rulers. Phillips was convinced: “It is hydrogen you’ve found; no other possible explanation.”

“This is an unconventional supernova program, but I am an unconventional observer–a theorist, in fact” said Kollmeier. “It’s an extremely painful project for our team to carry out. Observing these things is like catching a knife, because by definition they get fainter and fainter with time! It’s only possible at a place like Carnegie where access to the Magellan telescopes allow us to do time-intensive and sometimes arduous, but extremely important cosmic experiments. No pain, no gain.”

###

Media Contact
Juna Kollmeier
[email protected]

Related Journal Article

http://dx.doi.org/10.1093/mnras/stz953

Tags: AstronomyAstrophysicsSpace/Planetary ScienceStars/The Sun
Share12Tweet8Share2ShareShareShare2

Related Posts

The Evolution of Metalenses: From Single Devices to Integrated Arrays

The Evolution of Metalenses: From Single Devices to Integrated Arrays

August 21, 2025
Zigzag Graphene Nanoribbons with Porphyrin Edges

Zigzag Graphene Nanoribbons with Porphyrin Edges

August 21, 2025

Bending Light: UNamur and Stanford Unite to Revolutionize Photonic Devices

August 21, 2025

On-Chip All-Dielectric Metasurface Enables Creation of Topological Exceptional Points

August 21, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    141 shares
    Share 56 Tweet 35
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    114 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    60 shares
    Share 24 Tweet 15

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Celebrating 30 Years of Nanoimprint Lithography: Pioneering a New Era in Nanomanufacturing

Combination Therapy Enhances Treatment Outcomes in Advanced Triple-Negative Breast Cancer

Mount Sinai Researchers Develop First Targeted Therapy for Rare T-Cell Lymphoma Following CAR T Treatment

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.