• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, September 11, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Could climate change cause infertility?

Bioengineer by Bioengineer
April 15, 2019
in Health
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

The scientific community has long held an understanding about the effect of temperature on sperm production in mammals, but this new study sheds light on how spermatogenesis in insects is hampered at extreme temperatures.

In the new scientific paper, published in the Journal of Evolutionary Biology, and an academic letter recently published in Trends in Ecology & Evolution, University of Lincoln evolutionary ecologist Dr Graziella Iossa and behavioural ecologist Dr Paul Eady explain how the temperature at which an animal develops can impact its reproductive behaviour and physiology.

Dr Iossa said: “It is well known that the reason why testes are usually located outside the body cavity in male mammals is because sperm is damaged by excessive heat inside the body. However, it is now becoming clear that when subjected to heat stress, males become infertile before females do.

“It is not only intriguing that males and females show different sensitivity to temperature stress, it may also tell us something about how species will be affected by climate change and how we might buffer or tackle these sensitivities.”

Dr Iossa and Dr Eady, from the School of Life Sciences at Lincoln, have been leading research in this area for a number of years. Their most recent work, published in the Journal of Evolutionary Biology, examined sperm production and the copulatory behaviour of male and female Indian meal moths.

The Indian meal moth produces two types of sperm – a fertilizing eupyrene and a non-fertilizing apyrene sperm. The production of both sperm types is hampered by rising temperatures.

The moths were exposed to different temperatures (ranging from 20 – 33°C) during their development and up to the point when, as adults, they were ready to mate. The study found that sperm got shorter (and were therefore less effective) the higher the temperature the moths were exposed to, and that both males and females were less likely to engage in copulation when reared at the highest and lowest temperatures. Where they did copulate, the duration also decreased with increasing developmental temperature.

Studies looking at the impact of climate change on species have looked so far at the ability of species to survive under heat stress. Dr Iossa and Dr Eady are among the first scientists to examine how different temperatures impact on the reproductive behaviour of a species and thus fertility.

Previous work on other insects and also plants has found that you can mate females who have been heat stressed to non-stressed males, and they can produce offspring, however the reverse doesn’t work – heat-stressed males are often infertile. This shows that spermatogenesis (the production of sperm) appears more sensitive to heat stress than oogenesis (the production of eggs).

“These results are interesting because it is extremely important to understand how different species and different sexes will be affected by rising temperatures as the climate is changing,” explained Dr Iossa. “Models of the long-term impact of climate change on populations have focused on upper and lower critical thermal limits (CTLs), beyond which species survival is compromised. However research now suggests that species may become infertile – and therefore could become extinct – at a much lower temperature.

“Our study is consistent with current evidence that the production of sperm and mating behaviour are sensitive to developmental temperature and, in an era of global warming, further research in this area – examining both male and female fertility – is vital. The survival of natural populations ultimately depends on individuals being able to reproduce.”

###

Dr Iossa and Dr Eady’s paper, Temperature-induced developmental plasticity in Plodia interpunctella: reproductive behaviour and sperm length, is available to read in the Journal of Evolutionary Biology online. Dr Iossa’s letter on Sex-specific differences in Thermal Fertility Limits is published in Trends in Ecology & Evolution online.

Media Contact
Elizabeth Allen
[email protected]

Related Journal Article

https://www.lincoln.ac.uk/news/2019/04/1530.asp
http://dx.doi.org/10.1111/jeb.13447

Tags: BiologyClimate ChangeClimate ScienceDevelopmental/Reproductive BiologyEcology/EnvironmentEvolutionPopulation Biology
Share12Tweet8Share2ShareShareShare2

Related Posts

August 2025 Research Highlights from City of Hope

September 11, 2025

BU Scientist Secures NIH Grant to Investigate Mechanisms of Age-Related Cognitive Decline

September 11, 2025

Discovering a Female-Specific Mechanism Regulating Energy Expenditure in Brown Fat

September 11, 2025

Dr. Michael Welsh Honored with Lasker Award for Groundbreaking Cystic Fibrosis Research

September 11, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    152 shares
    Share 61 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    63 shares
    Share 25 Tweet 16
  • First Confirmed Human Mpox Clade Ib Case China

    56 shares
    Share 22 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

August 2025 Research Highlights from City of Hope

BU Scientist Secures NIH Grant to Investigate Mechanisms of Age-Related Cognitive Decline

BeAble Capital Invests in UJI Spin-Off Molecular Sustainable Solutions to Advance Disinfection and Sterilization Technologies

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.