• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, May 21, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Could a seawater battery help end our dependence on lithium?

Bioengineer by Bioengineer
December 7, 2016
in Science News
Reading Time: 2 mins read
0
ADVERTISEMENT
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Scientists have developed a battery that uses seawater as the catholyte.

Click for a high-resolution image…. view more

Credit: American Chemical Society

With the ubiquity of lithium-ion batteries in smartphones and other rechargeable devices, it's hard to imagine replacing them. But the rising price of lithium has spurred a search for alternatives. One up-and-coming battery technology uses abundant, readily available seawater. Now, making this option viable is one step closer with a new report on a sodium-air, seawater battery. The study appears in the journal ACS Applied Materials & Interfaces.

Sodium-air — or sodium-oxygen — batteries are considered one of the most promising, and cost-effective alternatives to today's lithium-ion standby. But some challenges remain before they can become a commercial reality. Soo Min Hwang, Youngsik Kim and colleagues have been tackling these challenges, using seawater as the catholyte — an electrolyte and cathode combined. In batteries, the electrolyte is the component that allows an electrical charge to flow between the cathode and anode. A constant flow of seawater into and out of the battery provides the sodium ions and water responsible for producing a charge. The reactions have been sluggish, however, so the researchers wanted to find a way to speed them up.

For their new battery, the team prepared a catalyst using porous cobalt manganese oxide nanoparticles. The pores create a large surface area for encouraging the electrochemical reactions needed to produce a charge. A hard carbon electrode served as the anode. The resulting battery performed efficiently over 100 cycles with an average discharge voltage of about 2.7 volts. This doesn't yet measure up to a lithium-ion cell, which can reach 3.6 to 4.0 volts, but the advance is getting close to bridging the gap, the researchers say.

###

The authors acknowledge funding from the Ulsan National Institute of Science and Technology (Republic of Korea).

The abstract that accompanies this study is available here.

The American Chemical Society is a nonprofit organization chartered by the U.S. Congress. With nearly 157,000 members, ACS is the world's largest scientific society and a global leader in providing access to chemistry-related research through its multiple databases, peer-reviewed journals and scientific conferences. Its main offices are in Washington, D.C., and Columbus, Ohio.

To automatically receive news releases from the American Chemical Society, contact [email protected].

Follow us: Twitter Facebook

Media Contact

Michael Bernstein
[email protected]
202-872-6042
@ACSpressroom

http://www.acs.org

############

Story Source: Materials provided by Scienmag

Share12Tweet7Share2ShareShareShare1

Related Posts

[Fig 1] Overview of Light-Powered Artificial Muscles for Underwater Soft Robotics

Revolutionary Light-Driven Artificial Muscles Enable High-Stroke Actuation in Underwater Robots

May 21, 2025
Comparing First Trimester Preeclampsia Screening in Indonesia

Comparing First Trimester Preeclampsia Screening in Indonesia

May 21, 2025

Standardizing Disposable Vape Devices Could Reduce Youth Appeal, Study Suggests

May 21, 2025

New Criteria Set to Uncover the True Severity of Brain Injuries

May 21, 2025
Please login to join discussion

POPULAR NEWS

  • Effects of a natural ingredients-based intervention targeting the hallmarks of aging on epigenetic clocks, physical function, and body composition: a single-arm clinical trial

    Natural Supplement Shows Potential to Slow Biological Aging and Enhance Muscle Strength

    90 shares
    Share 36 Tweet 23
  • Analysis of Research Grant Terminations at the National Institutes of Health

    79 shares
    Share 32 Tweet 20
  • Health Octo Tool Links Personalized Health, Aging Rate

    67 shares
    Share 27 Tweet 17
  • Scientists Discover New Electricity-Conducting Species, Honor Tribe in Naming

    55 shares
    Share 22 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Revolutionary Light-Driven Artificial Muscles Enable High-Stroke Actuation in Underwater Robots

Comparing First Trimester Preeclampsia Screening in Indonesia

Standardizing Disposable Vape Devices Could Reduce Youth Appeal, Study Suggests

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.