• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Cornell’s Center for Materials Research’s NSF funding extended, increased

Bioengineer by Bioengineer
September 22, 2017
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

The Cornell Center for Materials Research – which through research and education is enhancing national capabilities in science, technology, engineering, mathematics and materials research at all levels — has been has been granted $23.2 million for the next six years from the National Science Foundation.

The funding represents a 26 percent increase over the center's 2011 award. The CCMR is one of 20 members of the Materials Research Science and Engineering Centers (MRSEC) program in the Division of Materials Research at the NSF.

Cornell's MRSEC award approaches the maximum the NSF awards for the program. It is the result of a proposal submitted by the CCMR, which highlighted projects from three interdisciplinary research groups, or IRGs, in addition to the educational outreach and shared-facilities missions at the heart of CCMR.

"This funding is critically important, and we're so grateful to the NSF that our proposal was accepted," said Melissa Hines, director of the CCMR. "This funding supports a number of different things; a big chunk of it is research, but it also provides support for several other initiatives that are very important parts of what we do."

"We are delighted with the funding renewal from the National Science Foundation," said Emmanuel Giannelis, vice provost for research and vice president for technology transfer, intellectual property and research policy. "The award continues the collaborative research, education and outreach of the center that began more than 50 years ago. With state-of-the-art shared facilities and cutting-edge research, the CCMR's success is a testament to our faculty in materials research."

The IRG projects include:

Mechanisms, Materials and Devices for Spin Manipulation:

The project, co-led by Dan Ralph and Katja Nowack of physics, seeks to discover, understand and apply new mechanisms for controlling spins in magnetic devices. This field is important both because it is an area of rapid progress in fundamental materials physics, and improved spin control can often be applied quickly in technology.

"One of the impacts this could have is on next-generation computer memory," Hines said. "This team has had two really high-impact discoveries in the last six years, and we think they are the most important discoveries in the field of magnetism in the past decade. They're very well-positioned to make further gains."

Structured Materials for Strong Light-Matter Interactions:

This project, co-led by Greg Fuchs and Gennady Shvets of applied physics, seeks to understand, create and harness exceptionally strong light-matter interactions for scientific discoveries and future photonic information-processing technologies. The aim is to leverage expertise in materials and photonics, and generate significant enhancements in light-matter interactions and, hence, light-light coupling mediated by these interactions.

"They're trying to learn how to use light to do computing," Hines said. "Instead of electrons, which we now use for computing in our laptops, if we could do everything with light, it would up speed up processing and also reduce the power requirement."

2-D Atomic Membranes for 3-D Systems:

The goal of this project, co-led by Paul McEuen in physics and David Muller in applied physics, is to create atomically thin 2-D "paper" materials that self-fold into highly responsive 3-D structures. Success will depend on devising new strategies for self-folding.

"They're looking to create structures that could, for example, sense the environment and detect a pH change," Hines said. "They're imagining creating tiny little robots that would self-assemble. They're really far from that right now … but they're doing very cool things out of that very thin material."

Through this research and similar projects, the CCMR is educating a diverse cadre of undergraduates, graduate students and postdoctoral scholars to become leaders in the field of materials research at industrial, academic and government organizations.

Three other complementary functions complete the CCMR's mission: educational outreach to teachers and students, through development of pedagogical materials for K-12 classrooms and "outreach to our own students, to give them the skills they'll need to be successful," Hines said; industrial outreach and knowledge transfer; and the operation of shared facilities and instrumentation, in support of materials research on and off campus.

"Cornell has exquisite shared facilities that are really the envy of the nation," Hines said. "And one of the reasons is that we have trained facility managers whose job it is to keep the facilities running, to train people how to use these instruments and to be a resource."

###

The CCMR – established in 1960 as the Cornell Materials Science Center — attracts approximately 700 users each year to its facilities, which include electron microscopy and spectroscopic analysis of single-atom-thick samples. About 20 percent of the usage is from outside Cornell, including many industrial researchers.

Media Contact

Daryl Ann Lovell
[email protected]
607-592-3925
@cornell

http://pressoffice.cornell.edu

http://news.cornell.edu/stories/2017/09/center-materials-researchs-nsf-funding-extended-increased

Share12Tweet8Share2ShareShareShare2

Related Posts

New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

February 6, 2026

DeepBlastoid: Advancing Automated and Efficient Evaluation of Human Blastoids with Deep Learning

February 6, 2026

Navigating the Gut: The Role of Formic Acid in the Microbiome

February 6, 2026

AI-Enhanced Optical Coherence Photoacoustic Microscopy Revolutionizes 3D Cancer Model Imaging

February 6, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Exploring Decision-Making in Dementia Caregivers’ Mobility

Succinate Receptor 1 Limits Blood Cell Formation, Leukemia

Palmitoylation of Tfr1 Drives Platelet Ferroptosis and Exacerbates Liver Damage in Heat Stroke

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.