• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, October 14, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Corals in the Red Sea offer long-term view of the south Asian summer monsoon

Bioengineer by Bioengineer
April 16, 2019
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Photo by Konrad Hughen, Woods Hole Oceanographic Institution

When it comes to understanding future climate, the south Asian summer monsoon offers a paradox. Most climate models predict that as human-caused global warming increases, monsoon rain and wind will become more intense–but weather data collected in the region shows that rainfall has actually declined over the past 50 years.

A new study from Woods Hole Oceanographic Institution (WHOI) may help explain this discrepancy. Using chemical data from corals in the Red Sea, scientists reconstructed nearly three centuries of wind data that provided a definitive, natural record of the monsoon’s intensity. The finding, published online March 28 in the journal Geophysical Research Letters, show that monsoon winds have indeed increased over the past centuries.

“The south Asian monsoon is incredibly important,” said Konrad Hughen, a paleoclimatologist at WHOI and co-author on the paper. “It’s one of the biggest climate systems on the planet, and supplies water for almost a billion people–yet we don’t fully understand its long-term behavior. It’s a very complicated system with lots of moving parts.”

The problem, he added, is that historic records of rainfall are based on limited points in space with high variability, and calculating averages across a broad region is difficult. Researchers have not yet had a way to verify those records, and have limited information about weather patterns before instrumental records began.

Hughen and his colleagues were able to uncover that information thanks to the behavior of the monsoon winds themselves. One branch of the monsoon moves predominantly west to east, crossing the Sahara desert in northeast Africa, where it picks up fine dust and clay in the process. Its winds are then funneled through the Tokar Gap, a narrow mountain pass in eastern Sudan, where the dust they contain spills out into the Red Sea.

The dust picked up in the Sahara contains a form of barium that dissolves easily in seawater. Each year, corals in the Red Sea incorporate part of that barium into their skeletons as they grow, trapping within them a record of how much wind and dust blew through the gap during summer monsoons for hundreds of years.

“The barium gives us a proxy for wind,” said Hughen. “The more barium we found in a layer of coral, the more wind was coming though the Tokar Gap during the year it formed. Based on those winds, we can calculate the location of the low pressure systems that caused them, and we found they were primarily over the Indian subcontinent. That confirmed the winds’ connection to the monsoon”

The data in the corals seems to prove that historic records of rainfall may be missing a broader picture, Hughen said. Stronger winds would have increased moisture traveling over the Indian subcontinent, despite records showing rainfall dropping off.

“It could be that those records simply missed some of the rainfall, especially in the past when they were less reliable” he said. “Rain is highly variable from one place to another. Sometimes it’s pouring just a few miles from an area that’s not as wet. When you’re recording rainfall at only a few fixed points, you might not be able to capture those sorts of spatial variations.”

The coral records show that the strength of the monsoon is in fact increasing with time–a trend that’s in keeping with existing climate models–but its variability from decade to decade is diminishing. This suggests that as the climate has warmed, monsoon circulation has become more stable, so extra-heavy winds and rains could be the “new normal” for future years rather than just an anomaly.

###

Also collaborating on the study were lead author Sean P. Bryan of Colorado State University and formerly a postdoctoral researcher at WHOI, J. Thomas Farrar of WHOI, and Kristopher B. Karnauskas of the University of Colorado, Boulder.

This research was supported by grants to Hughen from NSF award #OCE-1031288 and KAUST award #USA00002, as well as a WHOI Postdoctoral Fellowship awarded to Sean P. Bryan. All data from the study will be made publicly available online through the NOAA NCDC Paleoclimatology data archive.

The Woods Hole Oceanographic Institution is a private, non-profit organization on Cape Cod, Mass., dedicated to marine research, engineering, and higher education. Established in 1930 on a recommendation from the National Academy of Sciences, its primary mission is to understand the oceans and their interaction with the Earth as a whole, and to communicate a basic understanding of the oceans’ role in the changing global environment. For more information, please visit http://www.whoi.edu.

Media Contact
WHOI Media Office
[email protected]

Original Source

https://www.whoi.edu/press-room/news-release/corals-in-the-red-sea-offer-long-term-view-of-south-asian-summer-monsoon/

Tags: Chemistry/Physics/Materials SciencesClimate ChangeOceanographyTemperature-Dependent Phenomena
Share12Tweet8Share2ShareShareShare2

Related Posts

Psychedelics Unveil Innovative Therapeutic Approaches for Stress-Related Psychiatric Disorders

Psychedelics Unveil Innovative Therapeutic Approaches for Stress-Related Psychiatric Disorders

October 14, 2025
blank

Scientists Unveil Novel Method to Manipulate Mechanical Vibrations in Metamaterials

October 13, 2025

Innovative Chemobiological Platform Converts Renewable Sugars into Key Aromatic Hydrocarbons Found in Petroleum

October 12, 2025

Harnessing Microwaves to Boost Energy Efficiency in Chemical Reactions

October 10, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1237 shares
    Share 494 Tweet 309
  • New Study Reveals the Science Behind Exercise and Weight Loss

    104 shares
    Share 42 Tweet 26
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    101 shares
    Share 40 Tweet 25
  • Revolutionizing Optimization: Deep Learning for Complex Systems

    91 shares
    Share 36 Tweet 23

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Nanomaterials Enhance In Vivo Ultrasound Luminescence Imaging

Unraveling Depression: Neuroimmune and Metabolic Stress Links

Personalized Access to Global Digital Health Technologies

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 65 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.