• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, August 25, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Copycat plant booster improves on nature

Bioengineer by Bioengineer
September 28, 2020
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: © 2020 KAUST; Boubacar A. Kountche and Jian You Wang

A molecule that can mimic the function of zaxinone, a natural growth-promoting plant metabolite, has been designed and fabricated by an international team led by KAUST and the University of Tokyo. Their successful mimic may have wide-reaching applications in plant biology and agriculture.

“We identified zaxinone in a previous study and found that it both stimulates the growth of rice plants and appears to reduce infestation by the root parasite Striga (witchweed),” says Jian You Wang, Ph.D. student under the supervision of Salim Al-Babili. “It is tempting to jump in and say we can harvest zaxinone from plants, study its activity and use it to boost crop yields, but it is not that simple.”

Living organisms produce growth regulating metabolites, such as zaxinone, at very low concentrations, and the molecules themselves are often short-lived and unstable. The team realized that to make full use of their discovery, they would need to design a synthetic molecule that can mimic zaxinone’s function, rather than using the metabolite itself.

“We first identified the parts of zaxinone that are crucial for its activity and the other parts that can be replaced or modified,” says Wang. “These results helped our team to design a series of easy-to-synthesize zaxinone mimics called MiZax.”

The team trialed MiZax by adding them to soil and measuring their ability to improve root growth and limit Striga infestation in rice plants. Two of the mimics, MiZax3 and MiZax5, proved particularly effective, with MiZax3 performing even better than zaxinone itself.

“We were excited to see the excellent activity and stability of MiZax3, even when it was used at very low concentrations,” says Wang. “It is important to note that we still do not know precisely how zaxinone itself works. MiZax3 will help us investigate the mechanisms behind zaxinone’s activity and how it changes plant hormone patterns and metabolism.”

“We will also perform controlled field and safety tests to evaluate MiZax activity on cereals and horticultural crops in greenhouse and research farms in the Kingdom,” says Al-Babili. “MiZax will help us improve our understanding of the development, growth and biotic interactions of cereals, particularly rice.”

###

Al-Babili is also going to integrate MiZax into a wider project he is leading, which is funded by the Bill & Melinda Gates Foundation, on combating Striga in sub-Saharan Africa.

Media Contact
KAUST Discovery team
[email protected]

Related Journal Article

http://dx.doi.org/10.1016/j.molp.2020.08.009

Tags: BiologyDeveloping CountriesEcology/EnvironmentNutrition/NutrientsParasitologyPhysiologyPlant Sciences
Share12Tweet8Share2ShareShareShare2

Related Posts

Plants defend against insects by inducing leaky gut syndrome

Plants defend against insects by inducing leaky gut syndrome

August 25, 2025
Rare Wasp Species Discovered in the U.S. for the First Time

Rare Wasp Species Discovered in the U.S. for the First Time

August 25, 2025

Refining Variant Analysis in Primate Genomes

August 25, 2025

The Active Role of Repetitive DNA in the Human Brain Uncovered

August 25, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    144 shares
    Share 58 Tweet 36
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

AI-Driven Innovation: Mount Sinai Researchers Develop Advanced Tool for Enhanced Cancer Tissue Analysis

How Gene-Diet Interactions Shape the Body’s Daily Rhythms

Immersive VR Enhances Nursing Students’ Birth Simulation

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.