• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, November 10, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Cooling nanotube resonators with electrons

Bioengineer by Bioengineer
October 8, 2019
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: © ICFO/ C. Urgell & W. Yang


Mechanical resonators have been used with great success as new resources in quantum technology. Carbon nanotube mechanical resonators have shown to be excellent ultra-high sensitive devices for the study of new physical phenomena at the nanoscale (e.g. spin physics, quantum electron transport, surface science, and light-matter interaction).

Mechanical resonators are often used to observe and manipulate the quantum states of the motion of relatively large systems. However, the drawback lies in the thermal noise force, which, if not controlled properly, ends up diluting any possibility of observing the quantum effects. Thus, scientists have been seeking for effective methods to cool down these systems down to the quantum regime and be able to observe quantum effects on demand. One of these approaches has been to use the transport of electrons along the resonator to cool down the system.

Many theoretical schemes have been proposed to cool these mechanical resonators using different electron transport regimes, but experimental difficulties have made it extremely challenging in terms of device fabrication and measurement. Despite many efforts, only one experimental realization of cooling was reported over a decade ago, in which researchers were able to cool down the system to a population number of 200 quanta, which is far from the quantum regime.

Now, in a new study published in Nature Physics, ICFO researchers Carles Urgell, Wei Yang, Sergio Lucio de Bonis, and Chandan Samanta, led by ICFO Prof. Adrian Bachtold, in collaboration with researchers from ICN2 in Barcelona and CNRS in France, have been able to demonstrate an experiment in which they cool down a nanomechanical resonator to 4.6 +- 2.0 quanta of vibration.

In their study, the team fabricated the resonator by growing a carbon nanotube between two electrodes, where in the last step of the fabrication process, they employed a chemical vapor deposition method to minimize any possible residual contaminant on the device. Then they inserted the system in a dilution refrigerator and cooled it down to 70 mK. The novelty of their technique lied in applying a constant current of electrons through the resonator. When a constant current was applied to the resonator, the electrostatic force of the electrons impacts the dynamics of the vibrations. These modified vibrations react back on the electrons, making a closed loop with a finite delay. This back-action of the electrons on the vibrations can be used to amplify or reduce the thermal vibration fluctuations. In the latter case, they used it to cool down the system to reduce the thermal displacement fluctuations, allowing them to approach the quantum regime limit mentioned before, with a population number never reached before when compared to previous work.

The results of the study have confirmed this method to be an excellent and very simple way to cool down nanomechanical resonators, which could be of utmost importance to scientists working in nanomechanics and quantum electron transport since it will become a powerful resource for quantum manipulation of mechanical resonators.

###

LINKS:

Link to the paper: https://www.nature.com/articles/s41567-019-0682-6

Link to the research group led by ICFO Prof. Adrian Bachtold: https://icfo.eu/lang/research/groups/groups-details?group_id=37

Media Contact
Alina Hirschmann
[email protected]
0034-935-542-246

Related Journal Article

http://dx.doi.org/10.1038/s41567-019-0682-6

Tags: Chemistry/Physics/Materials SciencesMaterialsNanotechnology/MicromachinesResearch/Development
Share12Tweet8Share2ShareShareShare2

Related Posts

How Plastics Bond with Metals at the Atomic Level

How Plastics Bond with Metals at the Atomic Level

November 10, 2025
Increasing Nitrogen and Rainfall May Dramatically Boost Greenhouse Gas Emissions from the World’s Largest Grasslands

Increasing Nitrogen and Rainfall May Dramatically Boost Greenhouse Gas Emissions from the World’s Largest Grasslands

November 7, 2025

OSU Develops Revolutionary New Material Advancing Medical Imaging Technology

November 7, 2025

Heat-Resistant Microbes Uncover Molecular Secrets Behind Nature’s Ultimate Recycling System

November 7, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    315 shares
    Share 126 Tweet 79
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    207 shares
    Share 83 Tweet 52
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    139 shares
    Share 56 Tweet 35
  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1303 shares
    Share 520 Tweet 325

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Exploring hsa-miR-1247-5p and TRIB2 in Sepsis Lung Injury

Switching Treprostinil Formulations: Key Evidence and Approaches

Blueprint Reveals Environmental Consequences of AI Data Center Expansion

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 70 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.