• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Wednesday, May 31, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Science

Controlling gene activity in human development

Bioengineer by Bioengineer
December 6, 2016
in Science
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Researchers at the Babraham Institute have revealed a new understanding of the molecular switches that control gene activity in human embryonic stem cells. This insight provides new avenues for improving the efficiency of being able to drive stem cells to create a desired cell type – an essential requirement to fulfil their promise in regenerative medicine.

In the developing embryo and during the specialisation of stem cells, the activity of genes must be tightly controlled (by a process called epigenetics) so that the correct genes are switched on and off at the right time and in the right cells. One of the main ways that this process is regulated is by a protein complex called Polycomb Repressive Complex 2 (PRC2), which keeps genes switched off until they are needed. We know from previous studies that PRC2 is necessary for controlling gene activity during the development of the fruit fly and the mouse, but we know very little about its role in human development or in the specialisation of stem cells.

As described in the journal Cell Reports, the researchers used the CRISPR gene editing technique to delete PRC2 from human embryonic stem cells. Loss of PRC2 caused the cells to switch on many genes that are not normally active in these cells. Interestingly, the set of genes that were switched on have important roles in the formation of specialised cell types in the developing embryo. This exciting finding reveals that one of the main functions of PRC2 is to keep these identity-specifying genes switched off during the very early stages of human development until they are required. The researchers also discovered that the quality and stability of the embryonic stem cells were compromised when the set of genes was aberrantly switched on. These changes led to the inability of embryonic stem cells lacking PRC2 to specialise correctly into mature cell types.

Dr Peter Rugg-Gunn, senior author on the research paper and research group leader at the Babraham Institute explained: "This work is exciting because it reveals that gene activity is controlled by similar molecular switches in human development as in other species such as the fly and mouse. We have also uncovered human-specific differences in the way that embryonic stem cells respond to genes being misregulated. These findings provide new insights into the development of our own species, and might enable new ways to turn embryonic stem cells into useful cell types, such as heart and pancreas, which can be used for cell-replacement therapies."

###

This research was funded through grants provided to Dr Peter Rugg-Gunn by the Wellcome Trust and the Medical Research Council (MRC). The Babraham Institute is strategically funded by the Biotechnology and Biological Sciences Research Council (BBSRC).

Media Contact

Louisa Wood
[email protected]
44-012-234-96230
@babrahaminst

http://www.babraham.ac.uk/

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

Five or more hours of smartphone usage per day may increase obesity

July 25, 2019
IMAGE

NASA’s terra satellite finds tropical storm 07W’s strength on the side

July 25, 2019

NASA finds one burst of energy in weakening Depression Dalila

July 25, 2019

Researcher’s innovative flood mapping helps water and emergency management officials

July 25, 2019
Please login to join discussion

POPULAR NEWS

  • plants

    Plants remove cancer causing toxins from air

    39 shares
    Share 16 Tweet 10
  • Element creation in the lab deepens understanding of surface explosions on neutron stars

    36 shares
    Share 14 Tweet 9
  • Groundbreaking study uncovers first evidence of long-term directionality in the origination of human mutation, fundamentally challenging Neo-Darwinism

    115 shares
    Share 46 Tweet 29
  • How life and geology worked together to forge Earth’s nutrient rich crust

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Plants can distinguish when touch starts and stops

New health indicator can revolutionize how we measure and achieve well-being

Biological cleanup discovered for certain “forever chemicals”

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 50 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In