• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Thursday, September 28, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Controlling chain conformations to enhance electronic devices

Bioengineer by Bioengineer
December 2, 2016
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Controlling the way fluorinated polymer chains twist and turn may enable fast and flexible electrical circuits, according to collaborative research conducted at Penn State. The findings may offer substantial impact on the development of new polymer-type materials used in flexible electronic applications.

Organic thin film transistors (OTFTs), which integrate organic semiconducting compounds in electronic components, have the potential to revolutionize the field of flexible electronics by generating bendable and foldable devices that act as electronic circuits. OTFTs are the building blocks of more complicated circuits and serve as the "on" and "off" switches between various electronic states. They are comprised of multiple layers, including a dielectric layer — which functions as an insulator — responsible for inducing charge.

"Our work aims to introduce new, more stable polymers into electrical circuits without negatively impacting performance," said Enrique Gomez, associate professor of chemical engineering, Penn State. "By controlling the way that polymer chains twist and bend at a molecular level in OTFTs, we have found that we are able to break the universal relationship between charge mobility of the semiconductor and charge storage capacity of the dielectric layer, providing a basis to create fast and reliable circuits from organic materials."

Controlling the order and arrangement of polymer chains along the semiconductor interface is the key in breaking the relationship, according to research published in Advanced Materials.

Polymers are capable of storing large amounts of electrical energy in the insulator, however, it is known that electrical energy slows as it travels through semiconducting materials. The hope is that new findings about the inverse relationship will lead to the development of fast organic devices with the capacity to revolutionize the flexible electronics industry.

Controlled arrangement of polymers is possible using new chemistries developed at Penn State that introduce cross-linkable polymers into high-charge capacity chains.

Gomez explained, "Polymers can easily be imagined as long macromolecules that resemble spaghetti noodles. They either have the appearance of cooked spaghetti, where all of the chains are tangled and randomly entwined, or uncooked spaghetti, in which the chains are straight and neatly stacked, providing order along the backbone."

Crosslinking polymer chains creates an alignment of polymers along the insulating level of OTFTs. The alignment leads to a decrease in charge traps — barriers or impediments along the insulator — ultimately, reducing current leakage and producing faster and more efficient circuits.

"We can think of charge traps as pot holes in the highway that electrons must travel over," said Gomez. "Decreasing the frequency of charge traps increases the speed in which OTFTs can switch on and off."

For this project, researchers chose to focus on fluorinated polymers, due to their exceptional stability and high propensity to store energy, and transistors derived from rubrene, an aromatic hydrocarbon.

Final results demonstrated that cross-linked insulators increased the mobility in OTFTs by more than one order of magnitude — about 10 times — higher than that of rubrene single-crystal devices made with conventional insulators.

The researchers are hopeful that the results will lead to the discovery of new low-cost materials that can be used in flexible electronic devices, which encompass a myriad of applications, including digital displays, wearable technologies and health monitoring equipment, among many others.

###

Collaborating with Gomez on the work were fellow Penn State researchers Jwala Adhikari, primary author and recent Penn State chemical engineering Ph.D.; Qing Wang, professor of materials science and engineering; Matthew Gadinski, graduate student in the Department of Materials Science and Engineering; Qi Li, postdoctoral fellow in the Department of Materials Science and Engineering; Thomas Jackson, Robert E. Kirby Chair Professor of Electrical Engineering; and Kaige G. Sun, a recent Penn State electrical engineering Ph.D.

Additional collaborators included Alejandro L. Briseno, professor of polymer science and engineering, University of Massachusettes, Amherst; Marcos Reyes-Martinez, postdoctoral research associate in Chemical and Biological Engineering, Princeton University; and Elissei Iagodkine, associate research scientist, Dow Chemical Company.

The Dow Chemical Company funded this work through a grant established to advance flexible and printed electronics at Penn State.

Media Contact

A'ndrea Elyse Messer
[email protected]
814-865-9481
@penn_state

http://live.psu.edu

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

Few eligible patients get access to publicly funded weight management programs in England

Few eligible patients get access to publicly funded weight management programs in England

September 28, 2023
Dr. Michael A. Williams UW Medicine

Ethics rules needed for human research on commercial spaceflights, panel says

September 28, 2023

A few essential genetic differences tailor flowers to bee or hummingbird pollinators

September 28, 2023

Innovative double-layer polysaccharide hydrogel revolutionizes intestine-targeted oral delivery of probiotics

September 28, 2023
Please login to join discussion

POPULAR NEWS

  • blank

    Microbe Computers

    59 shares
    Share 24 Tweet 15
  • A pioneering study from Politecnico di Milano sheds light on one of the still poorly understood aspects of cancer

    35 shares
    Share 14 Tweet 9
  • Fossil spines reveal deep sea’s past

    34 shares
    Share 14 Tweet 9
  • Scientists go ‘back to the future,’ create flies with ancient genes to study evolution

    75 shares
    Share 30 Tweet 19

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Few eligible patients get access to publicly funded weight management programs in England

Ethics rules needed for human research on commercial spaceflights, panel says

A few essential genetic differences tailor flowers to bee or hummingbird pollinators

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 56 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In