• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, June 15, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Controlled synthesis of crystal flakes paves path for advanced future electronics

Bioengineer by Bioengineer
June 17, 2022
in Chemistry
Reading Time: 4 mins read
0
ADVERTISEMENT
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

The third dimension may be responsible for preventing electronics from becoming thinner, tinier and more flexible, according to an international collaboration that developed a way to manufacture new, idealized two-dimensional semiconductor materials.

Controlled synthesis of crystal flakes pave path for advanced future electronics

Credit: Nano Research, Tsinghua University Press

The third dimension may be responsible for preventing electronics from becoming thinner, tinier and more flexible, according to an international collaboration that developed a way to manufacture new, idealized two-dimensional semiconductor materials.

 

They published their approach on June 3 in Nano Research. (DOI 10.1007/s12274-022-4543-8)

 

The researchers, led by Lin Zhou, associate professor of chemistry at Shanghai Jiao Tong University in China, focused on indium arsenide (InAs), a narrow bandgap semiconductor with  properties useful for high-speed electronics and highly sensitive infrared photodetectors. Unlike most of the existing 2D materials with layered strucutures, the problem, Zhou said, is that InAs typically has a 3D lattice structure, which makes it challenging to transform into ultrathin 2D films for advanced electronic and optoelectronic applications. 

 

“The growth of large, ultrathin 2D non-layered materials has been a grand challenge, but one worth solving.Thanks to its high mobility and tunable bandgap, 2D InAs could be a critical material for next-generation, high-performance nano-electronics, nano-photonics and quantum devices,” Zhou said. “It has the advantages of both InAs, such as high carrier mobility, small and direct bandgap size, and 2D materials, which have an ultrathin nature suitable for small size devices, are flexible and transparent.” This work also provides a promising way to further expand the group of 2D semiconductors by incorporating materials with non-layered structures.

 

The researchers took advantage of a weak atomic attraction known as the van der Waals force in epitaxy growth. The force describes how neutral molecules can connect with one another, while epitaxy involves applying an overlay of one material to a crystal-like substrate. Using atomically flat mica, which is naturally layered, as a substrate, the researchers grew a thin layer of InAs. The molecules in the mica substrate and the molecules in the InAs are mutually attracted enough to connect, preventing the InAs from growing into a 3D lattice. Moreover, the van der Waals growth ensures strain-free and no misfit dislocations in as-grown 2D InAs. The InAs can be incredibly thin with desired properties. 

 

Zhou also noted that the InAs and the substrate do not covalently bond, so they can be separated and the substrate re-used, making the synthesis process more cost-effective.

 

“We also found that we can tune the properties of 2D InAs by changing the material’s thickness due to the quantum confinement effect,” Zhou said. “The 2D InAs is easy to tailor to achieve desired properties and to integrate with other compounds. In addition to manipulating the thickness during synthesis, we can also stack 2D InAs with other 2D materials to form heterojunctions for multifunction performance, giving them significant advantages in electronics and photovoltaics.”

 

The final 2D InAs material takes the form of triangular flakes, roughly five nanometers thick. That’s about 0.0007 the size of a single red blood cell. The tinier the material, the smaller the devices it will eventually comprise, Zhou said.

 

“Prior to this work, high-quality 2D — meaning less than 10 nanometers thick — InAs had not been reported, let alone a scalable synthesis of 2D InAs single crystals with unique optical and electronic properties,” Zhou said. “Our work paves the way for miniaturization InAs-based devices and integrations.”

 

Next, Zhou said the team will explore new 2D semiconductor to grow with an ultimate goal of achieving scalable synthesis of high-quality 2D materials over large areas for multi-functional applications.

 

Other authors include Jiuxiang Dai, Zhitong Jin, Yunlei Zhou, Xianyu Hu and Tao Li, Shanghai Jiao Tong University, China; Teng Yang, Chinese Academy of Sciences; Jingyi Zou and Xu Zhang, Carnegie Mellon University, United States; Weigao Xu, Nanjing University, China; and Yuxuan Lin, University of California, United States.

 

The National Key Basic Research Program of China, the start-up funds of Shanghai Jiao Tong University, the National Natural Science Foundation of China, the National Key R&D Program of China, the National Natural Science Foundation of China and Beijing National Laboratory for Molecular Sciences supported this research.

 

The paper is also available on SciOpen (https://www.sciopen.com/article/10.1007/s12274-022-4543-8) by Tsinghua University Press.

 

##

 

About Nano Research 

 

Nano Research is a peer-reviewed, international and interdisciplinary research journal, sponsored by Tsinghua University and the Chinese Chemical Society. It offers readers an attractive mix of authoritative and comprehensive reviews and original cutting-edge research papers. After more than 10 years of development, it has become one of the most influential academic journals in the nano field. Rapid review to ensure quick publication is a key feature of Nano Research. In 2020 InCites Journal Citation Reports, Nano Research has an Impact Factor of 8.897 (8.696, 5 years), the total cites reached 23150, and the number of highly cited papers reached 129, ranked among the top 2.5% of over 9000 academic journals, ranking first in China’s international academic journals.

 

About SciOpen 

 

SciOpen is a professional open access resource for discovery of scientific and technical content published by the Tsinghua University Press and its publishing partners, providing the scholarly publishing community with innovative technology and market-leading capabilities. SciOpen provides end-to-end services across manuscript submission, peer review, content hosting, analytics, and identity management and expert advice to ensure each journal’s development by offering a range of options across all functions as Journal Layout, Production Services, Editorial Services, Marketing and Promotions, Online Functionality, etc. By digitalizing the publishing process, SciOpen widens the reach, deepens the impact, and accelerates the exchange of ideas.

 



Journal

Nano Research

DOI

10.1007/s12274-022-4543-8

Article Title

Controlled growth of two-dimensional InAs single crystals via van der Waals epitaxy

Article Publication Date

3-Jun-2022

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Scientists Develop Innovative Method to Eliminate Phosphorus from Polluted Water

June 11, 2025
New atom interferometer

Quantum Navigation Breakthrough: Atom-Based Device Measures 3D Acceleration with Unprecedented Precision

June 11, 2025

Green Light Triggers Antibiotic Activation Precisely Where Needed

June 11, 2025

New ‘Breathalyzer’ Sensor Enables Rapid Detection of Methanol Poisoning

June 11, 2025

POPULAR NEWS

  • Green brake lights in the front could reduce accidents

    Study from TU Graz Reveals Front Brake Lights Could Drastically Diminish Road Accident Rates

    158 shares
    Share 63 Tweet 40
  • New Study Uncovers Unexpected Side Effects of High-Dose Radiation Therapy

    75 shares
    Share 30 Tweet 19
  • Pancreatic Cancer Vaccines Eradicate Disease in Preclinical Studies

    69 shares
    Share 28 Tweet 17
  • How Scientists Unraveled the Mystery Behind the Gigantic Size of Extinct Ground Sloths—and What Led to Their Demise

    65 shares
    Share 26 Tweet 16

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Magnetic Soft Millirobot Enables Simultaneous Locomotion, Sensing

Urban Form Shapes Compound Natural Risk: US Study

Perivascular Fluid Diffusivity Predicts Early Parkinson’s Decline

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.