• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, August 28, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Controlled nano-assembly

Bioengineer by Bioengineer
May 23, 2018
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

DNA, the carrier of genetic information, has become established as a highly useful building material in nanotechnology. One requirement in many applications is the controlled, switchable assembly of nanostructures. In the journal Angewandte Chemie, scientists have now introduced a new strategy for control through altering pH value. It is based on ethylenediamine, which only supports the assembly of DNA components in a neutral to acidic environment—independent of the base sequences and without metal ions.

A set of short single strands of DNA can be knitted into a tile which further aggregates into a rich range of geometries through self-directed, sticky-end cohesions. The so-called tile assembly mimics a crystal-forming process in nature. Once the right strands are designed, a specific structure forms through a self-assembly process. Researchers hope to use this method in the future to organize nanomaterials or make nanorobots that could carry out tiny interventions in diseased organs or even individual cells. Nanoelectronics and nanocatalysis are also possible areas of future application.

The controlled, switchable assembly of nanostructures occurs with the help of certain DNA structural motifs that change their shape when the pH changes. However, these structures are based on very specific base sequences. In contrast, a sequence-independent method would offer access to a universal, versatile method for the self-assembly of DNA, significantly broadening the possible areas of application for dynamic DNA nanotechnology.

Scientists at Hefei University of Technology; University of Science and Technology of China, Hefei, China, and Purdue University in West Lafayette, USA, start off with a small organic molecule, ethylenediamine, H(2)N–CH(2)–CH(2)–NH(2). In water, one or both of the amino groups (-NH(2)) reversibly bind an additional proton (H(+)), depending on the pH value. The relative amounts of the three possible species depend strongly on the pH. The ethylenediamine molecules with a twofold positive charge are able to electrostatically shield the negative charges in the DNA backbone so they repel each other less, which favors self-assembly.

The team headed by Yulin Li, Zhaoxiang Deng, and Chengde Mao was able to use an ethylenediamine-containing buffer to assemble individual cross-shaped DNA building blocks (tiles) into an extended two-dimensional honeycomb structure in a neutral to acidic environment. In slightly alkaline conditions, no extended structures formed. As an example of a three-dimensional structure, the researchers made tetrahedral cages out of building blocks shaped like three-pointed stars. At a pH of 6.5, the stars were reversibly converted to tetrahedron; at a pH of 8 they reverted to the star shape or individual strands.

To shield the negative charges in the DNA, positively charged metal ions like Mg(2+) are usually used. The ethylenediamine buffer requires no metal ions. Metal ions increase the activity of many enzymes, particularly DNA-splitting nucleases. This new system is thus better suited for use in the presence of enzymes.

###

About the Author

Dr. Yulin Li is Professor of Chemistry at Hefei University of Technology, Hefei, China. His research interests include construction of DNA nanomachines and programmable assembly of bioinorganic nanohybrids.

mailto:[email protected]

Media Contact

Mario Mueller
[email protected]

http://newsroom.wiley.com/

http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1521-3773/homepage/press/201813press.html

Related Journal Article

http://dx.doi.org/10.1002/anie.201804054

Share13Tweet7Share2ShareShareShare1

Related Posts

Red Beet Gene Boosts Tuber Growth and Disease Resistance

Red Beet Gene Boosts Tuber Growth and Disease Resistance

August 28, 2025
blank

VHL Inhibits Angiogenesis via HIF-1a in Macrophages

August 28, 2025

Trainer Insights on Canine Aggression and Behavior Solutions

August 27, 2025

Genomic Analysis Reveals How Cavefish Evolved to Lose Their Eyes

August 27, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    149 shares
    Share 60 Tweet 37
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    82 shares
    Share 33 Tweet 21

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Advancing Diabetes Care: The Role of CGM Systems

Diabetes, Pain, and Medication: A Palestinian Study

Electrically Powered Lasing in Dual-Cavity Perovskite

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.