• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Thursday, July 7, 2022
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Construction of practical quantum computers radically simplified

Bioengineer by Bioengineer
December 2, 2016
in Science News
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: University of Sussex

Scientists at the University of Sussex have invented a ground-breaking new method that puts the construction of large-scale quantum computers within reach of current technology.

Quantum computers could solve certain problems – that would take the fastest supercomputer millions of years to calculate – in just a few milliseconds. They have the potential to create new materials and medicines, as well as solve long-standing scientific and financial problems.

Universal quantum computers can be built in principle – but the technology challenges are tremendous. The engineering required to build one is considered more difficult than manned space travel to Mars – until now.

Quantum computing on a small scale using trapped ions (charged atoms) is carried out by aligning individual laser beams onto individual ions with each ion forming a quantum bit. However, a large-scale quantum computer would need billions of quantum bits, therefore requiring billions of precisely aligned lasers, one for each ion.

Instead, scientists at Sussex have invented a simple method where voltages are applied to a quantum computer microchip (without having to align laser beams) – to the same effect.

Professor Winfried Hensinger and his team also succeeded in demonstrating the core building block of this new method with an impressively low error rate at their quantum computing facility at Sussex.

Professor Hensinger said: "This development is a game changer for quantum computing making it accessible for industrial and government use. We will construct a large-scale quantum computer at Sussex making full use of this exciting new technology."

Quantum computers may revolutionise society in a similar way as the emergence of classical computers. Dr Seb Weidt, part of the Ion Quantum Technology Group said: "Developing this step-changing new technology has been a great adventure and it is absolutely amazing observing it actually work in the laboratory."

###

Notes for editors

University of Sussex media relations contact: Julia Harris, 01273 678111 – [email protected]

The Ion Quantum Technology Group forms part of UK's National Quantum Technology Programme, a £270M investment by the UK Government to accelerate the translation of quantum technologies into the marketplace.

'Trapped-ion quantum logic with global radiation fields', by S. Weidt, J. Randall, S. C. Webster, K. Lake, A. E. Webb, I. Cohen, T. Navickas, B. Lekitsch, A. Retzker, and W. K. Hensinger is published in the journal Physical Review Letters (Phys. Rev. Lett. 117, 220501 (2016)).

A short film about Professor Hensinger's work can be found here: https://www.youtube.com/watch?v=naqHy5MAYXw A popular science lecture given by Prof. Hensinger explaining the principles of quantum computing can be found here: https://www.youtube.com/watch?v=fccSQHBssi0&feature=youtu.be

Prof. Hensinger heads the Ion Quantum Technology Group at the University of Sussex and he is Director of the Sussex Centre for Quantum Technologies. The group is part of the UK Quantum Technology Hub on Networked Quantum Information Technologies which is funded by the Engineering and Physical Sciences Research Council (EPSRC). As the main funding agency for engineering and physical sciences research, their vision is for the UK to be the best place in the world to Research, Discover and Innovate.

Media Contact

Press Office
[email protected]
01-273-678-111
@sussexunipress

http://www.sussex.ac.uk

############

Story Source: Materials provided by Scienmag

Share12Tweet7Share2ShareShareShare1

Related Posts

Research

Nanoparticle ‘backpacks’ restore damaged stem cells

July 7, 2022
Illustration of Meraxes

A new giant dinosaur gives insight into why many prehistoric meat-eaters had such tiny arms

July 7, 2022

Led by Columbia Engineering, researchers build longest, highly conductive molecular nanowire 

July 7, 2022

The beginning of life: The early embryo is in the driver’s seat

July 7, 2022
Please login to join discussion

POPULAR NEWS

  • blank

    Telescopic contact lenses

    40 shares
    Share 16 Tweet 10
  • Oregon State University research finds evidence to suggest Pacific whiting skin has anti-aging properties that prevent wrinkles

    38 shares
    Share 15 Tweet 10
  • The pair of Orcas deterring Great White Sharks – by ripping open their torsos for livers

    37 shares
    Share 15 Tweet 9
  • Emerging Omicron subvariants BA.2.12.1, BA.4 and BA.5 are inhibited less efficiently by antibodies

    37 shares
    Share 15 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

Zoology/Veterinary ScienceVirologyWeaponryUniversity of WashingtonVehiclesUrogenital SystemVirusWeather/StormsUrbanizationVaccinesVaccineViolence/Criminals

Recent Posts

  • Nanoparticle ‘backpacks’ restore damaged stem cells
  • A new giant dinosaur gives insight into why many prehistoric meat-eaters had such tiny arms
  • Led by Columbia Engineering, researchers build longest, highly conductive molecular nanowire 
  • The beginning of life: The early embryo is in the driver’s seat
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
Posting....