• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, September 13, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Connecting the dots to shape growth forces

Bioengineer by Bioengineer
March 28, 2024
in Biology
Reading Time: 3 mins read
0
Curvature-sensitive ERK activation
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Kyoto, Japan — Branching patterns are prevalent in our natural environment and the human body, such as in the lungs and kidneys. For example, specific genes that express growth factor proteins are known to influence the development of the lungs’ complex branches. Still, until now the mechanics behind this phenomenon have remained a mystery.

Curvature-sensitive ERK activation

Credit: KyotoU Tobiyama / Tsuyoshi Hirashima

Kyoto, Japan — Branching patterns are prevalent in our natural environment and the human body, such as in the lungs and kidneys. For example, specific genes that express growth factor proteins are known to influence the development of the lungs’ complex branches. Still, until now the mechanics behind this phenomenon have remained a mystery.

Kyoto University researchers have unveiled a regulatory system linking signal, force, and shape in mouse lung structure development. The team recognized that the signal protein ERK plays an active role in causing growing lung tissue to curve.

“ERK signals the cell tissue to stretch outward to smoothen its curve,” says Tsuyoshi Hirashima, formerly of KyotoU’s Graduate School of Biostudies and now at the National University of Singapore’s Mechanobiology Institute.

As if choreographed, a mix of chemical signals triggers the cellular mechanics of the lungs of a mouse embryo, resulting in the development of intricate branching patterns.

Mechanobiology has gained increasing attention in recent years, focusing on cell- and tissue-generated forces, intracellular signaling, and their combined interactions with geometric factors that influence morphogenesis.

“ERK’s surprisingly precise signaling response to lung tissue curvature was enlightening. It suggests an elegantly more nuanced developmental orchestration than previously thought,” reflects Hirashima. 

Utilizing advanced microscopic imaging techniques, Hirashima’s team observed how ERK behaves in developing lungs in real time by combining a fluorescent biosensor — for quantifying the ERK activity in living cells — with two-photon microscopy, which captures tissue cell and molecular activities in 3D. 

Results showed that ERK mediates curvature sensing and force generation in epithelial cells, causing a negative feedback loop and a repetitive branching pattern.

“We are particularly interested in exploring how disruptions in this signal-force-shape system might contribute to physiological abnormalities or diseases,” says Hirashima.

These ideas may apply to the developmental processes of other organs and the formation of mouse lungs, a realization that calls for further exploration of fundamental principles.

“Ultimately, our findings offer a deeper understanding of the novel principles of biological regulatory systems, with promising applications in regenerative medicine and organoid research,” concludes Hirashima.

###

The paper “ERK-mediated Curvature Feedback Regulates Branching Morphogenesis in Lung Epithelial Tissue” appeared on 15 January 2024 in Current Biology, with doi: 10.1016/j.cub.2023.12.049

About Kyoto University
Kyoto University is one of Japan and Asia’s premier research institutions, founded in 1897 and responsible for producing numerous Nobel laureates and winners of other prestigious international prizes. A broad curriculum across the arts and sciences at undergraduate and graduate levels complements several research centers, facilities, and offices around Japan and the world. For more information, please see: http://www.kyoto-u.ac.jp/en



Journal

Current Biology

DOI

10.1016/j.cub.2023.12.049

Method of Research

Experimental study

Subject of Research

Cells

Article Title

ERK-mediated Curvature Feedback Regulates Branching Morphogenesis in Lung Epithelial Tissue

Article Publication Date

15-Jan-2024

COI Statement

The authors declare no competing interests.

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Extraction Methods Impact Idesia Polycarpa Oil Quality

September 13, 2025

Evaluating Rohu Fry Transport: Key Water Quality Insights

September 13, 2025

Unveiling Arabidopsis Aminotransferases’ Multi-Substrate Specificity

September 13, 2025

Evaluating Energy Digestibility in Quail Feed Ingredients

September 12, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    153 shares
    Share 61 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    65 shares
    Share 26 Tweet 16
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Boosting Xanthan Gum Production with Essential Oil By-products

Groundwater Pesticide Contamination: Challenges and Solutions

FBXW11 Ubiquitinates YB1, Suppressing Hepatocarcinoma Growth

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.