• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Wednesday, May 31, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Confirmation of Wendelstein 7-X magnetic field

Bioengineer by Bioengineer
December 5, 2016
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Nature Communications

Physicist Sam Lazerson of the U.S. Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL) has teamed with German scientists to confirm that the Wendelstein 7-X (W7-X) fusion energy device called a stellarator in Greifswald, Germany, produces high-quality magnetic fields that are consistent with their complex design.

The findings, published in the November 30 issue of Nature Communications, revealed an error field — or deviation from the designed configuration — of less than one part in 100,000. Such results could become a key step toward verifying the feasibility of stellarators as models for future fusion reactors.

W7-X, for which PPPL is the leading U.S. collaborator, is the largest and most sophisticated stellarator in the world. Built by the Max Planck Institute for Plasma Physics in Greifswald, it was completed in 2015 as the vanguard of the stellarator design. Other collaborators on the U.S. team include DOE's Oak Ridge and Los Alamos National Laboratories, along with Auburn University, the Massachusetts Institute of Technology, the University of Wisconsin-Madison and Xanthos Technologies.

Twisty magnetic fields

Stellarators confine the hot, charged gas, otherwise known as plasma, that fuels fusion reactions in twisty — or 3D — magnetic fields, compared with the symmetrical — or 2D –fields that the more widely used tokamaks create. The twisty configuration enables stellarators to control the plasma with no need for the current that tokamaks must induce in the gas to complete the magnetic field. Stellarator plasmas thus run little risk of disrupting, as can happen in tokamaks, causing the internal current to abruptly halt and fusion reactions to shut down.

PPPL has played key roles in the W7-X project. The Laboratory designed and delivered five barn door-sized trim coils that fine-tune the stellarator's magnetic fields and made their measurement possible. "We've confirmed that the magnetic cage that we've built works as designed," said Lazerson, who led roughly half the experiments that validated the configuration of the field. "This reflects U.S. contributions to W7-X," he added, "and highlights PPPL's ability to conduct international collaborations." Support for this work comes from Euratom and the DOE Office of Science.

To measure the magnetic field, the scientists launched an electron beam along the field lines. They next obtained a cross-section of the entire magnetic surface by using a fluorescent rod to intersect and sweep through the lines, thereby inducing fluorescent light in the shape of the surface.

Remarkable fidelity

Results showed a remarkable fidelity to the design of the highly complex magnetic field. "To our knowledge," the authors write of the discrepancy of less than one part in 100,000, "this is an unprecedented accuracy, both in terms of the as-built engineering of a fusion device, as well as in the measurement of magnetic topology."

The W7-X is the most recent version of the stellarator concept, which Lyman Spitzer, a Princeton University astrophysicist and founder of PPPL, originated during the 1950s. Stellarators mostly gave way to tokamaks a decade later, since the doughnut-shaped facilities are simpler to design and build and generally confine plasma better. But recent advances in plasma theory and computational power have led to renewed interest in stellarators.

Such advances caused the authors to wonder if devices like the W7-X can provide an answer to the question of whether stellarators are the right concept for fusion energy. Years of plasma physics research will be needed to find out, they conclude, and "that task has just started."

###

PPPL, on Princeton University's Forrestal Campus in Plainsboro, N.J., is devoted to creating new knowledge about the physics of plasmas — ultra-hot, charged gases — and to developing practical solutions for the creation of fusion energy. The Laboratory is managed by the University for the U.S. Department of Energy's Office of Science, which is the largest single supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

Media Contact

John Greenwald
[email protected]
609-243-2672
@PPPLab

http://www.pppl.gov

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

Human functioning beyond disability and disease

New health indicator can revolutionize how we measure and achieve well-being

May 31, 2023
Scientist in laboratory

Biological cleanup discovered for certain “forever chemicals”

May 31, 2023

The clams that fell behind, and what they can tell us about evolution and extinction

May 31, 2023

Shedding light on the complex flow dynamics within the small intestine

May 31, 2023
Please login to join discussion

POPULAR NEWS

  • plants

    Plants remove cancer causing toxins from air

    39 shares
    Share 16 Tweet 10
  • Element creation in the lab deepens understanding of surface explosions on neutron stars

    36 shares
    Share 14 Tweet 9
  • Groundbreaking study uncovers first evidence of long-term directionality in the origination of human mutation, fundamentally challenging Neo-Darwinism

    115 shares
    Share 46 Tweet 29
  • How life and geology worked together to forge Earth’s nutrient rich crust

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

New health indicator can revolutionize how we measure and achieve well-being

Biological cleanup discovered for certain “forever chemicals”

The clams that fell behind, and what they can tell us about evolution and extinction

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 50 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In