• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, September 7, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Concentration of cell membrane components with nanocarbon materials

Bioengineer by Bioengineer
July 19, 2023
in Chemistry
Reading Time: 3 mins read
0
Localization of lipid domains on graphene oxide
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Overview

Localization of lipid domains on graphene oxide

Credit: COPYRIGHT (C) TOYOHASHI UNIVERSITY OF TECHNOLOGY. ALL RIGHTS RESERVED.

Overview

A research team from the Department of Applied Chemistry and Life Science at the Toyohashi University of Technology (Professor Ryugo Tero et al.) discovered a phenomenon in which specific lipids were concentrated on graphene oxide in a multicomponent lipid bilayer membrane serving as a cell membrane model. This research team also clarified the mechanism by which the components of “lipid rafts” (where important cell membrane reactions such as neurotransmission and metabolism occur) gather owing to the surface characteristics of graphene oxide. This discovery is expected to be utilized in fundamental technologies for concentrating and separating the lipids and membrane proteins in cell membranes as important research targets in the medicine and drug discovery fields.

 

Details

Transportaion of the substances, information, and energy necessary for life activities in and out of cells are conducted through cell membranes. These exchanges are deeply involved in neurotransmission, metabolism, and viral infections, making them important research targets in the biology, medicine, and drug-discovery fields. The fundamental structure of the cell membrane is a lipid bilayer membrane. Specific lipids and membrane proteins gather through the lateral diffusion and aggregation of molecules within the membrane. Such regions are called lipid domains, which in turn controls and improves the efficiency of the reactions occurring in the cell membrane. One representative example of the lipid domain is the “lipid raft”, which is rich in sphingolipids and cholesterol. New technologies for controlling and arranging the positions of lipid domains on a solid substrate are demanded for the biosensing and screening of lipids and membrane proteins.

This research team fabricated an artificial lipid bilayer on a graphene oxide monolayer deposited on a silicon substrate. They discovered for the first time that the lipid domains were concentrated on the graphene oxide. Graphene oxide has a structure in which hydrophilic oxygen functional groups are added to graphene (a monoatomic sheet material of carbon).

In a two-component lipid bilayer consisting of two types of phosphatidylcholines with different fluidities, majority of the low-fluidity gel phase domains in the lipid bilayer membrane gathered on the graphene oxide. In a three-component mixed lipid bilayer membrane of sphingolipids, cholesterols, and phosphatidylcholine, many lipid raft components were present on the graphene oxide.

Professor Ryugo Tero, the leader of the research team, explained as follows: “Regardless of the lipid composition, the less fluid lipid domains clustered on the graphene oxide. This was owing to the presence of a mixture of hydrophilic and hydrophobic regions on the graphene oxide surface on a nanometer scale. The initial process of the domain formation in the lipid bilayer occurred preferentially in the hydrophobic regions of the graphene oxide.”

 

Future Outlook

The research team expects that the control the positions of the lipid domains on the solid substrate is applicable to arrange the membrane proteins with a high affinity for those lipids in the same locations. This discovery is useful for fundamental technologies in the fields of biosensing and screening targeting membrane proteins. Furthermore, the research team believes that the same method can be used to collect biochemically important lipid components such as glycolipids as well as the lipid raft. They expect that this will be useful in the development of techniques for concentrating and purifying the rare lipids and membrane proteins in cell membranes.

 

Reference

Ryugo Tero, Yoshi Hagiwara and Shun Saito (2023). Domain Localization by Graphene Oxide in Supported Lipid Bilayers, 24 (9), 7999, doi.org/10.3390/ijms24097999.

 

This research was supported by the Japan Society for the Promotion of Science (JSPS) Grant-in-Aid for Scientific Research (KAKENHI) JP20H02690 and the Nitto Foundation.

 

 

 



Journal

International Journal of Molecular Sciences

DOI

10.3390/ijms24097999

Method of Research

Experimental study

Subject of Research

Not applicable

Article Title

Domain Localization by Graphene Oxide in Supported Lipid Bilayers

Article Publication Date

28-Apr-2023

Share12Tweet8Share2ShareShareShare2

Related Posts

Scientists Convert Plastic Waste into High-Performance CO2 Capture Materials

Scientists Convert Plastic Waste into High-Performance CO2 Capture Materials

September 5, 2025
Decoding Orderly and Disorderly Behavior in 2D Nanomaterials: Paving the Way for AI-Driven Custom Designs

Decoding Orderly and Disorderly Behavior in 2D Nanomaterials: Paving the Way for AI-Driven Custom Designs

September 5, 2025

Physicists Develop Visible Time Crystal for the First Time

September 5, 2025

Adaptive Visible-Infrared Camouflage Enables Wide-Spectrum Radiation Control for Extreme Temperature Environments

September 5, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    150 shares
    Share 60 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • First Confirmed Human Mpox Clade Ib Case China

    56 shares
    Share 22 Tweet 14
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Understanding Nurses’ Incident Reporting Challenges in Mogadishu

ECG Insights on Stress in Scorpion Mud Turtle

Gender Variations in Microglial Stress Response Uncovered

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.