• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, January 2, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Cancer

Computer simulation reveals p53 weak spots and opens new avenues against cancer

Bioengineer by Bioengineer
September 7, 2016
in Cancer
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Cartoon representation of a complex between DNA and the protein p53 (described in Cho et al. Science 265 pp. 346, 1994 [1])
Cartoon representation of a complex between DNA and the protein p53 (described in Cho et al. Science 265 pp. 346, 1994 [1])

p53 has long been known to be a key protein associated with many cancers. Its main function is to suppress tumor formation in the body, and thus protect it from cancer development. However, p53 is considerably less stable compared to its two cousins, p63 and p73. Of the three proteins, p53 is the one that has deviated the most from its ancestral invertebrate version. All three proteins have a region in their sequences that is responsible for recognizing and binding to target gene sequences, called a DNA binding domain (DBD).

Loss of p53 function, which in most cases is caused by destabilizing DBD mutations, is prone to aggregation and formation of amyloid fibrils, an outcome that may be explained by its high instability. Additionally, p53 aggregates have a prion-like behavior, in which p53 mutants highjack normal p53 molecules and convert them into the inactive amyloid form.

Over 90% of p53 mutations leading to cancer development are in the DBD, making it an important target for new cancer therapies. However, the tendency of p53 to aggregate and form amyloids is an obstacle for developing new strategies.

To gain a deeper understanding of the molecular features underlying p53 DBD stability, amyloid formation, and aggregation, a research group led by Jerson Lima Silva at the Federal University of Rio de Janeiro, Brazil, used microsecond timescale molecular dynamics (MD) simulations, a computational method used for studying the precise movements of atoms over time. MD allows researchers to study biological processes at a level of detail that is difficult to obtain by conventional experiments, providing new insights into how proteins work and predicting the origins of malfunction.

In a study entitled “Aggregation tendencies in the p53 family are modulated by backbone hydrogen bonds,” published in the journal Scientific Reports, the group investigates the DBD sequence and structure of the three proteins (p53, p63, and p73) and shows that although they have similar sequences and structures in their respective DBDs, p53 is more prone to aggregation than the other two. The study shows that the innate structural weakness of p53 is explained by a high incidence of exposed backbone hydrogen bonds that are vulnerable to water attack. In contrast, p63 and p73 have better protected hydrogen bonds, and can resist water invasion and subsequent aggregation. “Our work sheds light on the molecular features underlying p53 DBD stability. The new knowledge can be used to develop strategies for stabilizing p53 and diminishing its tendency to form amyloids,” says Elio A. Cino, first author of the study.

The group is now performing studies to investigate how amyloid formation induced by common p53 mutations is associated with breast cancer, glioblastomas, and other malignant tumors, and is testing specific small molecules and peptides as a way to diminish p53 aggregation and formation of amyloid fibrils.

###

Media Contact

Jerson L. Silva
[email protected]
55-219-993-90502

http://www.publicase.com.br/

The post Computer simulation reveals p53 weak spots and opens new avenues against cancer appeared first on Scienmag.

Share12Tweet8Share2ShareShareShare2

Related Posts

Derazantinib Boosts Gemcitabine by Blocking MUC5AC

December 30, 2025

FOCUS Study Reveals Insights on Melphalan for Uveal Melanoma

December 29, 2025

Black Grape Anthocyanins Boost 5-FU Cancer Therapy

December 29, 2025

Girdin Silencing Boosts Mebendazole’s Ovarian Cancer Fight

December 29, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    PTSD, Depression, Anxiety in Childhood Cancer Survivors, Parents

    113 shares
    Share 45 Tweet 28
  • NSF funds machine-learning research at UNO and UNL to study energy requirements of walking in older adults

    71 shares
    Share 28 Tweet 18
  • Exploring Audiology Accessibility in Johannesburg, South Africa

    52 shares
    Share 21 Tweet 13
  • SARS-CoV-2 Subvariants Affect Outcomes in Elderly Hip Fractures

    44 shares
    Share 18 Tweet 11

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Reprogrammable Nonlinear Optics with Ferroelectric Liquid Crystals

Advancements in Droplet Microfluidics for Biomaterials

Topological Vertical Cavity Lasers from Soft Matter

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 71 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.