• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Saturday, December 2, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Science

Computer modeling could lead to new method for detecting, managing prostate cancer

Bioengineer by Bioengineer
November 22, 2016
in Science
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Credit: Proceedings of the National Academy of Sciences.

New research coauthored by Brigham Young University researchers may lead to a more accurate system for early detection, diagnosis, and treatment of prostate cancer.

The new study, published this week in Proceedings of the National Academy of Sciences, details a computer model that uses medical images to reproduce the growth patterns of prostate cancer on the anatomy of a patient's prostate.

This type of mathematical modeling and simulation of disease is called predictive medicine, a new trend in medical research that leads to personalized treatment and more accurate forecasting of clinical outcomes.

"There is a lot of room for improvement in both the diagnosis and management of prostate cancer," said study coauthor Michael Scott, BYU professor of civil and environmental engineering. "We're using computer modeling to capture the behavior of prostate tumor growth which will hopefully lead to minimally invasive predictive procedures which can be used in clinical practice."

Current diagnosis methods include invasive biopsy procedures which too often lead to patients being over-treated or under-treated. Complicating matters is the fact that prostate cancer can remain undiagnosed because early stages of the disease may not produce symptoms until a tumor is either very large or has invaded other tissues.

The new system could lead to both earlier diagnosis and less invasive testing. It's a promising development given prostate cancer is the second most common cancer among men worldwide, responsible for 308,000 deaths in 2012 and estimated to take 26,120 lives in the U.S. alone in 2016.

Scott, and fellow BYU professor Kevin Tew teamed up with colleagues at the University of Coruna, UT-Austin and Carnegie Mellon for the study. The personalized tumor growth simulations leveraged the high-performance computing resources available through BYU's Fulton Supercomputing Lab.

Scott said the research is still in its infancy and extensive validation and refinement of the model must occur before it is ready for clinical application. That said, "it's likely that these types of models will eventually turn up in medical practice," he added.

"We are entering an age where we will see the emergence of tools which leverage computation to improve diagnosis of disease," Scott said. "And we're not the only people working in this area–it's rapidly growing."

###

Guillermo Lorenzo, a PhD student from University of Coruna who spent a semester at Scott's BYU lab at the outset of the study, is the lead author on the paper.

Media Contact

Todd Hollingshead
[email protected]
801-422-8373
@byu

http://www.byu.edu

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

Five or more hours of smartphone usage per day may increase obesity

July 25, 2019
IMAGE

NASA’s terra satellite finds tropical storm 07W’s strength on the side

July 25, 2019

NASA finds one burst of energy in weakening Depression Dalila

July 25, 2019

Researcher’s innovative flood mapping helps water and emergency management officials

July 25, 2019
Please login to join discussion

POPULAR NEWS

  • Figure 1

    Understanding rapid tendon regeneration in newts may one day help human athletes

    84 shares
    Share 34 Tweet 21
  • Study finds increasingly popular oral nicotine pouches do little to curb smokers’ cravings

    35 shares
    Share 14 Tweet 9
  • SMART researchers pioneer novel microfluidic method to optimise bone marrow stem cell extraction for advanced cell therapies

    34 shares
    Share 14 Tweet 9
  • UMass Amherst receives $2.5 million from Howard Hughes Medical Institute to reshape STEM education

    34 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Pathogens use force to breach immune defenses, study finds

A color-based sensor to emulate skin’s sensitivity

Keeping Texas bridges ‘safe and usable for years to come’

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 58 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In