• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, September 8, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Computational study reveals how Ebola nucleocapsid stabilizes

Bioengineer by Bioengineer
October 20, 2020
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

All-atom simulations of the Ebola virus nucleocapsid reveal how a helical assembly, indispensable for viral infection, stabilizes the virus

IMAGE

Credit: Tanya Nesterova

WASHINGTON, October 20, 2020 — The Ebola virus causes a serious infection with a mortality rate between 50% and 90%. Nucleoproteins in the virus assemble into a helical arrangement and encapsulate a single stranded RNA genome, ssRNA, to form a rodlike complex known as a nucleocapsid, which is critical to the function of the virus. Rodlike nucleocapsids are also found in other viruses, like SARS-CoV-2, which causes COVID-19.

In The Journal of Chemical Physics, by AIP Publishing, scientists at the University of Delaware report a computational study of this nucleocapsid and show that the binding of the ssRNA allows the nucleocapsid to maintain its shape and structural integrity.

Simulations of viruses are difficult because the systems are very large. Only a few capsids, including hepatitis B, HPV, HIV-1, and the satellite tobacco mosaic virus, have been investigated at the atomic level. Molecular dynamics simulations of the Ebola nucleocapsid, to date, have been conducted only of its isolated constituents and not at the atomic level.

This work represents the first atomic-level computational investigation of the Ebola nucleocapsid assembly. The model used by the investigators included all atoms in the helical nucleoprotein assembly, the ssRNA, water molecules, and even ions, such as sodium and chloride, that stabilize this highly charged structure.

The resulting model has 4.8 million atoms, namely the nucleocapsid structure with the ssRNA present and without it. The second system was included as a control to investigate the role of the ssRNA.

“We found that ssRNA encapsidation results in stabilization of the Ebola virus nucleocapsid and is essential for maintaining structural integrity of its helical assembly,” said author Juan Perilla.

The investigators found that the nucleoprotein interactions and ions contribute to the stability of the nucleocapsid. In the Ebola nucleocapsid, nucleoproteins connect with each other to form a helical assembly. Sodium and chloride ions were found to cluster near the nucleocapsid in the simulation to counter its charge repulsions.

The rodlike nucleocapsid structure is essential for the Ebola virus’s ability to infect and evade cellular defense mechanisms as well as its ability to replicate within host cells. The nucleocapsid acts as a scaffold for virus assembly and as a template for transcription of the virus’s genes and replication. Its critical roles during infection make it an ideal candidate for antiviral intervention.

Molecular-level knowledge of virus dynamics is needed to understand structure and function and pinpoint vulnerabilities, but it is usually inaccessible from experiment. These insights are readily available from computer simulations, however.

This study should help scientists develop drug treatments that target viral nucleocapsids. The investigators anticipate the methodological approach they have developed for Ebola can be used to study other helical structures, such as the nucleocapsid of SARS-CoV-2.

###

The article, “Molecular determinants of Ebola nucleocapsid stability from molecular dynamics simulations,” is authored by Chaoyi Xu, Nidhi Katyal, Tanya Nesterova, and Juan R. Perilla. The article will appear in The Journal of Chemical Physics on Oct. 20, 2020 (DOI: 10.1063/5.0021491). After that date, it can be accessed at https://aip.scitation.org/doi/10.1063/5.0021491.

Media Contact
Larry Frum
[email protected]

Related Journal Article

http://dx.doi.org/10.1063/5.0021491

Tags: BiochemistryBiologyChemistry/Physics/Materials SciencesMedicine/HealthMicrobiologyVirology
Share12Tweet8Share2ShareShareShare2

Related Posts

Scientists Convert Plastic Waste into High-Performance CO2 Capture Materials

Scientists Convert Plastic Waste into High-Performance CO2 Capture Materials

September 5, 2025
Decoding Orderly and Disorderly Behavior in 2D Nanomaterials: Paving the Way for AI-Driven Custom Designs

Decoding Orderly and Disorderly Behavior in 2D Nanomaterials: Paving the Way for AI-Driven Custom Designs

September 5, 2025

Physicists Develop Visible Time Crystal for the First Time

September 5, 2025

Adaptive Visible-Infrared Camouflage Enables Wide-Spectrum Radiation Control for Extreme Temperature Environments

September 5, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    150 shares
    Share 60 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • First Confirmed Human Mpox Clade Ib Case China

    56 shares
    Share 22 Tweet 14
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Evaluating Impact of Environment on Kenyan Donkey Welfare

Protecting Youth from the Risks of Sports Betting Advertising in Canada

U-Shaped BMI Link to Liver Stiffness Risk

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.