• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, September 18, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Cancer

Computational platform optimizes multiple myeloma treatments

Bioengineer by Bioengineer
August 8, 2018
in Cancer
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Masturah Bte Mohd Abdul Rashid and colleagues have developed a new platform that optimizes drug combinations for the treatment of multiple myeloma (MM), an incurable blood cancer. The computational platform, named QPOP, could one day help improve clinical outcomes in patients with MM that has become resistant to standard therapies. Combination therapies have become a pillar of many cancer treatment plans because they can be more effective than single therapies that only disrupt one molecular pathway. MM – a blood cancer involving malignant plasma cells – is frequently treated with combination therapies that include bortezomib, a first-line drug with promising response rates. However, most MM patients end up relapsing due to the development of resistance against bortezomib, highlighting a need to identify secondary combination treatments that can overcome or forestall therapeutic resistance. Rashid and colleagues developed a tool named the quadratic phenotypic optimization platform (QPOP), which approximates biological responses to therapies using advanced mathematical equations. Unlike conventional models, QPOP doesn't require predetermined information about the mechanisms or composition of a drug to optimize treatments. The authors tested their platform with 128 different combinations of 14 FDA-approved anticancer drugs, and found QPOP was able to identify effective combinations and dosages against bortezomib-resistant MM. A combination of the approved drugs mitomycin C and decitabine decreased tumor size and prolonged survival in a mouse model of bortezomib-resistant MM, suggesting the platform could be a useful tool in efforts to identify promising drug combinations for MM patients.The authors also say that further studies will be needed to determine if QPOP could be applied to the treatment of other blood cancers.

###

Media Contact

Science Press Package team
[email protected]
202-326-6440
@AAAS

http://www.aaas.org

http://dx.doi.org/10.1126/scitranslmed.aan0941

Share12Tweet8Share2ShareShareShare2

Related Posts

Graz University of Technology Pioneers Lung Cancer Research Using Digital Cell Twin Technology

September 18, 2025

New Study Investigates Cancer Risks in Children Exposed to Medical Imaging

September 18, 2025

Widely Available, Affordable Medication Reduces Colorectal Cancer Recurrence Risk by Half

September 17, 2025

Penn Engineers Investigate Tumor Mechanics and Microscopic Messengers to Transform Cancer Research

September 17, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    155 shares
    Share 62 Tweet 39
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    117 shares
    Share 47 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    67 shares
    Share 27 Tweet 17
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

AI Delegation May Boost Dishonest Behavior

Prenatal Counseling of Trisomy 18 Heart Defects

DeepSeek-R1 Boosts LLM Reasoning via RL

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.