• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, August 5, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Compass orientation of a migratory bat species depends on sunset direction

Bioengineer by Bioengineer
April 4, 2019
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Christian Giese

Whether it is bats, wildebeest or whales, millions of mammals move over thousands of kilometres each year. How they navigate during migration remains remarkably understudied compared to birds or sea turtles, however. A team of scientists led by the Leibniz-IZW in Berlin now combined a mirror experiment simulating a different direction of the setting sun and a new test procedure to measure orientation behaviour in bats to understand the role of the sun’s position in the animals’ navigation system. The results demonstrate for the first time that a migratory mammal species uses the sunset direction to calibrate their compass system. Furthermore the experiment, which is published in Current Biology, indicates that this capacity is not inherited and first-time migrating young bats need to learn the importance of the solar disc at dusk for nightly orientation.

The experiment that scientists Oliver Lindecke and Christian Voigt from the Leibniz Institute for Zoo and Wildlife Research (Leibniz-IZW) designed and conducted together with colleagues from Latvia and the United Kingdom was based on two steps: First, several Soprano pipistrelle bats (Pipistrellus pygmaeus) were randomly assigned into two groups. At nightfall during their migration period, one group could watch the natural sunset at the Latvian Baltic Sea shore. The other group however watched the sun going down via a large mirror which was reversing the direction of the natural sunset exactly 180°. For the latter animals, the real sunset was blocked from vision by the taped sidewall of their holding cages. Later at night, animals of both groups were transported inland, away from the beach of the Baltic Sea, for the second step of the experiment: On a forest meadow, one bat after the other got released remotely from a specially designed circular release box. By the help of this box, the very direction an animal took when it left it, could be recorded. Prior studies showed that take-off orientations could be used as a proxy for departure flight orientation in these bats.

“The new orientation assay, the circular release box for bats, ruled out any visual influence at takeoff and allowed us to compare the directions bats of both groups where taking”, explains Lindecke. “The results show two fundamental aspects in bat navigation: Firstly, the setting sun’s direction plays a crucial role because there is a significant difference in the bats’ orientation with the group which experienced the mirrored sunset departing in opposite direction compared to the control group. And secondly, only adult bats showed directional preferences”, Lindecke summarizes the results. “Subadults displayed random orientation in both groups, which suggests to us that young bats need to learn long-distance navigation during migration from older conspecifics”, concludes Christian Voigt, senior author and head of the Department of Evolutionary Ecology at the Leibniz-IZW. How this learning process works and which social factors and practices contribute to it remains unknown and needs further investigation.

Mammals remain remarkably understudied with regard to navigation during migration. One of the reasons I a lack of experimental assays that measure a correlate of migratory orientation such as those that exist in birds and sea turtles. The larger migratory mammals, for example wildebeest or whales, are challenging to handle for any experimental work. Bats could fill this void as they have emerged as an important study model in movement ecology. They combine high ecophysiological diversity with a variety of movement behaviours. Bat eyes evolved to sense a wide range of light and a broad spectrum of wavelengths. Presumably, insectivorous bats rely heavily on vision like fruitbats when orienting over long distances since echolocation and path integration are ineffective and error-prone at distances larger than a few dozen meters. The results of this study are the first empirical evidence for the specific cues and mechanisms a migratory mammal uses for navigation.

###

Media Contact
Christian C. Voigt
[email protected]

Tags: BiodiversityBiologyEcology/EnvironmentPopulation BiologyZoology/Veterinary Science
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Trametes NF1 Boosts Alfalfa Growth Under Saline Stress

August 5, 2025
blank

New Trematode Species Found in Mediterranean Cardinal Fish

August 5, 2025

Ultrasound L-Lysine Boosts Pork Color Stability

August 5, 2025

Effortless Weight Loss: Achieving Results Without Nausea

August 5, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Neuropsychiatric Risks Linked to COVID-19 Revealed

    73 shares
    Share 29 Tweet 18
  • Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    61 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    46 shares
    Share 18 Tweet 12
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Trametes NF1 Boosts Alfalfa Growth Under Saline Stress

Necrotizing Fasciitis Fatality in Casted Arm Uncovered

New Trematode Species Found in Mediterranean Cardinal Fish

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.